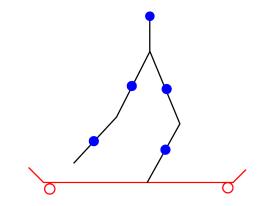
Modeling & Control of a Longboard-Riding Robot

Matt Keeter mkeeter@mit.edu

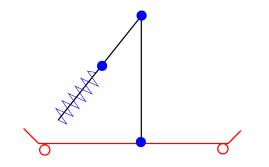
6.832 Final Project Spring 2012

Inspiration

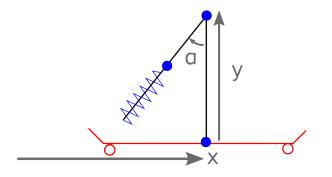
System Model



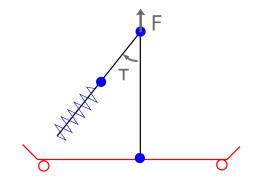
Simplified Model



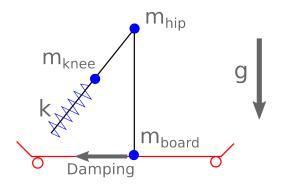
State Variables



Control Inputs



System Parameters



System Summary

•
$$\mathbf{q} = [\mathbf{x}, \mathbf{y}, \alpha]'$$

System Summary

•
$$\mathbf{q} = [x, y, \alpha]'$$

• $\mathbf{u} = [F, \tau]'$

System Summary

• Gliding and pushing modes

•
$$y_{\text{toe}} \leq 0 \rightarrow \text{pushing}$$

•
$$y_{toe} > 0 \rightarrow \text{gliding}$$

• Wrote tools to automatically solve dynamics

- Wrote tools to automatically solve dynamics
- Written in Python using Sage

- Wrote tools to automatically solve dynamics
- Written in Python using Sage
- Solves for:
 - Second derivatives
 - Co-located PFL equations

- Wrote tools to automatically solve dynamics
- Written in Python using Sage
- Solves for:
 - Second derivatives
 - Co-located PFL equations
- Exports as MATLAB scripts

Feedback Linearization

• Solve dynamics equations for \ddot{x} , F, τ

- Solve dynamics equations for \ddot{x} , F, τ
- Solutions are in terms of **q**, **q̇**, *ÿ*, *α̈* (as well as constants)

- Solve dynamics equations for \ddot{x} , F, τ
- Solutions are in terms of **q**, **q̇**, *ÿ*, *α̈* (as well as constants)
- Plug in \ddot{y} , $\ddot{\alpha}$ for feedback linearization

•
$$\ddot{y} = \ddot{y}_{\text{desired}}$$

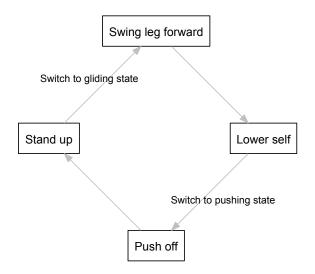
•
$$\ddot{\alpha} = \ddot{\alpha}_{desired}$$

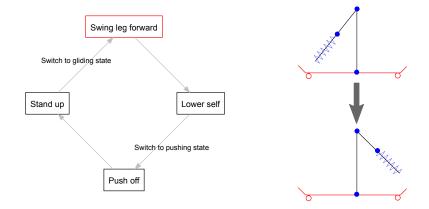
- Solve dynamics equations for \ddot{x} , F, au
- Solutions are in terms of **q**, **q̇**, *ÿ*, *α̈* (as well as constants)
- Plug in \ddot{y} , $\ddot{\alpha}$ for feedback linearization

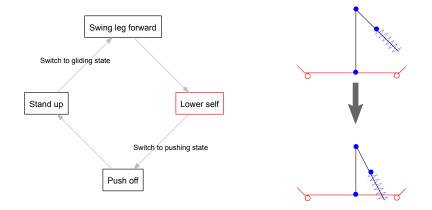
•
$$\ddot{y} = \ddot{y}_{\text{desired}}$$

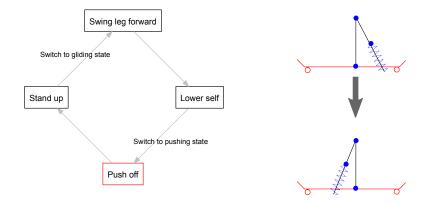
- $\ddot{\alpha} = \ddot{\alpha}_{\text{desired}}$
- Double integrator control

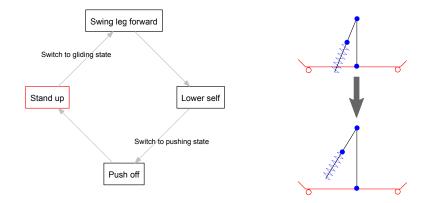
High-level strategy breaks motion into stages

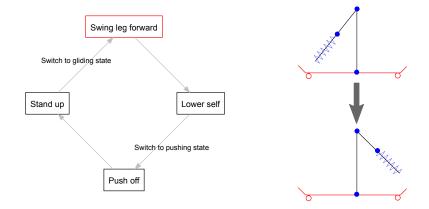




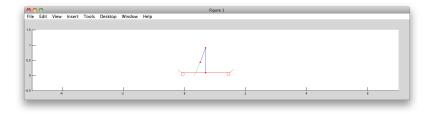








Demo

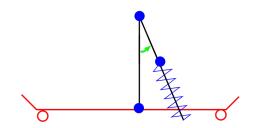


Controller is parameterized by three terms:

 α_{hit} | Angle of collision α_{stand} | Angle ending push $\ddot{\alpha}_{swing}$ | Swinging acceleration

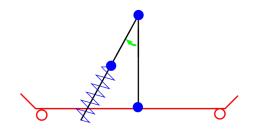
Controller Parameters

$\begin{array}{ll} \alpha_{\rm hit} & {\rm Angle \ of \ collision} \\ \alpha_{\rm stand} & {\rm Angle \ ending \ push} \\ \ddot{\alpha}_{\rm swing} & {\rm Swinging \ acceleration} \end{array}$

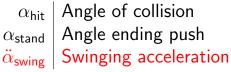


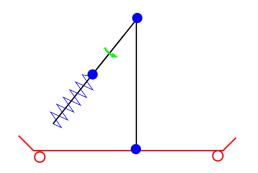
Controller Parameters

 α_{hit} | Angle of collision α_{stand} | Angle ending push $\ddot{\alpha}_{swing}$ | Swinging acceleration



Controller Parameters



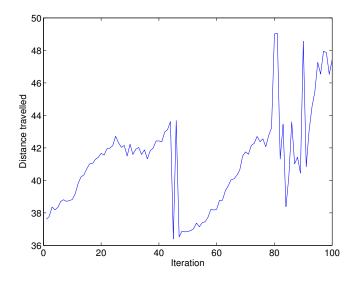


Stochastic Gradient Descent

Optimized for distance travelled in fixed time

Stochastic Gradient Descent

Optimized for distance travelled in fixed time



Optimized Demo

Optimized Demo



20% improvement!

- Developed simplified system model
- Wrote dynamics-solving tools
- Designed high-level controller behavior
- Used gradient descent to optimize parameters

Questions?

