
Final Report: Longboard-Riding Robot

Matthew Keeter

6.832, Spring 2012

Introduction

This report presents a simple dynamics model for a longboard-riding robot and a

controller that allows it to push itself across a flat surface. In addition, we show the

result of stochastic gradient descent on controller parameters, which produces a faster

but more erratic controller.

System Model

The primary motivation for this project was to investigate pushing and gliding, so

the chosen model ignores some of the complex system dynamics involved in a full

humanoid. The model has two legs: The standing leg rests on the board and the

pushing leg swings back and forth or pushes against the ground.

There are two main simplifications in the legs: We transform the shin and thigh of

the standing leg into a vertical beam which can change its y position (but is always

vertical), and the pushing leg as a straight beam with a spring as its bottom half.

This model has three state variables: x, y, and α. These state variables are shown

in Figure 1A. The state variable x represents distance travelled (with ẋ representing

forward velocity); y represents hip height; α represents leg swing angle.

The model has two actuators, shown in Figure 1B. The first actuator is a hip height

actuator; as mentioned above, this is an abstraction of foot and knee in the standing

leg. This actuator exerts a force F on the hip joint in the y direction. The second

actuator exerts a torque τ on the swinging leg.

Figure 1: State variables (A), control inputs (B), and parameters (C) of the model
system. Note that α < 0 in this example state.

The model system is a hybrid system; it switches between gliding and pushing modes.

1

The mode is determined by the location of the toe: if ytoe is below ground level, then

the system switches into pushing mode; if ytoe is above the ground then it switches into

gliding mode. In pushing mode, xtoe is locked at xtoe = 0 to simplify dynamics.

To summarize, the model system has state variables q = [x, y, α]′ and co-located

actuators u = [F, τ]′ causing accelerations at y and α, respectively.

Equations of Motion

The equations of motion for this system were generated using Lagrangian dynamics[1].

Separate derivations were necessary for gliding and pushing modes. In both modes,

the velocities of each mass contribute to kinetic energy, and the y position of each

mass contributes to potential energy.

In pushing mode, there is extra potential energy due to compression of the pushing

leg’s spring. In addition, a virtual angular spring is used to enforce straightness of

the pushing leg. This spring penalizes differences between knee and hip angles, with

a spring constant of 100k.

Software tools were developed to automatically generate equations of motion from a

Lagrangian L, state vector q, and control input vector u. For each state variable qi

and co-located actuator input uj, the Lagrangian equation[2]

d

dt

∂L

∂q̇i
− ∂L

∂qi
= uj

was generated and stored (where uj = 0 for a state if qi lacks a co-located actua-

tor).

This results in a system of equations which can be solved by a computer algebra

system. For this project, Sage[3] was used. The equations were solved twice: once

for accelerations ẍ, ÿ, and α̈; and once for the variables ẍ, F , and τ .

The first set of solutions gives the system’s dynamics. The second set of solutions

allows for partial feedback linearization. The solution set is in terms of q, q̇, ÿ, and α̈.

Since q and q̇ are known, the desired values for ÿ, and α̈ can be plugged in, resulting

in required values of F and τ to achieve those accelerations.

The tools developed for this project automatically export dynamics and PFL functions

to MATLAB scripts. This allows for rapid model prototyping and development.

2

Controller Design

The system controller was designed using prior knowledge, based on self-observation

while riding. It switches between four stages of motion, shown in Figure 2.

Push off

Stand up Lower self

Switch to pushing state

Swing leg forward

Switch to gliding state

Figure 2: The four stages of motion for the system’s controller.

Partial feedback linearization (PFL) is used at each of these stages, reducing control

to that of the double integrator. Linearized accelerations are limited to ÿ ≤ ÿmax and

α̈ ≤ α̈max; note that this is not equivalent to a force/torque limit on the actuators,

as the required controller inputs to match the desired acceleration also depend on q

and q̇.

The system is parameterized by three values: αhit is the angle at which the leg collides

with the ground; αstand is the angle at which the robot begins to stand up, and α̈swing

is the angular acceleration as the robot swings its leg forward.

The following paragraphs give details on system behavior in each stage.

Swing leg foward: In this stage, the controller swings the leg forward to an angle

αstart. This angle is chosen so that when swung downward, the toe will touch the

ground with ẋtoe = −max(0.1, 1.2ẋ); this encourages the system to match or slightly

exceed the ground’s velocity. The value of αstart is restricted to be less than π/3, to

produce more human movement.

The controller enters the next state when |α− αstart| < 0.01.

Lower self: In this state, the leg is accelerated at α̈ = −α̈max. Hip force F is

controlled using PFL and double integrator control so that the swinging foot touches

the ground with α = αhit, ẏ = 0. The controller enters the next state when ytoe <

0.

3

Push off: While pushing, the leg continues to be accelerated with α̈ = −α̈max and

height is maintained at y = L cosαhit. The controller enters the next state when

α < αstand.

Stand up: While standing up, the leg is controlled to α = −αhit, α̇ = 0, y = L,

ẏ = 0 using the same double integrator control as before. The controller enters the

next state when |y − L| < 0.01.

Controller Performance

Figure 3 shows time-slices of the controller with parameters αhit = π
5
, αstand = − π

10
,

α̈swing = 75 rad/sec2. These values were chosen empirically based on experimenta-

tion.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

Figure 3: Time slices of trajectory.

Selected state trajectories are plotted in Figure 4. It appears to show the robot

settling into a periodic trajectory.

−2

0

2

α

0.5

1

1.5

y

0 1 2 3 4 5 6
−10

0

10

20

ẋ

Time

Figure 4: State trajectories

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

ẋ[0]

ẋ
[1
]

Figure 5: Slice of return map

To examine stability, a slice of the velocity return map was generated. For a range

of ẋ[0] values, the system was initialized at state q = [0, L,−αhit]
′, q̇ = [ẋ[0], 0, 0]′

and simulated until completion of the “stand up” control stage, at which point ẋ[1]

was recorded. The return map is shown in Figure 5; it shows a controller that is very

nearly dead-beat with respect to velocity.

4

Controller Optimization

The controller was optimized using stochastic gradient descent (SGD) over the three

parameters αhit, αstand, and α̈swing. The “score” for an evaluation was distance trav-

elled, where higher scores are better.

For a given set of parameters p[i], we calculated distance travelled for p[i] and p[i]+D,

where D is sampled from the vector of normal distributions
[
N (0, 1

5
),N (0, 1

5
),N (0, 2)

]′
.

On every iteration, p[i + 1] was calculated as p[i] ± 0.2D (where 0.2 is the learning

rate), depending on whether D improved or worsened performance.

SGD often pushed the controller into surprising states, producing unusual trajectories

where the robot would spin its leg up and over its head. Pathological cases (e.g. where

the hip dipped below the ground) were penalized with a distance score of 0. Score

and parameter values are shown in Figures 6 and 7.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

I te rat ion

D
is
t
a
n
c
e
t
r
a
v
e
ll
e
d

Figure 6: SGD score

0.4

0.6

0.8

αh i t
R
a
d
ia
n
s

−1

−0.5

0

αstand

R
a
d
ia
n
s

0 20 40 60 80 100
65

70

75

α̈sw in g

I te rat ion

R
a
d
ia
n
s/

s2

Figure 7: SGC parameter values

The final trajectory is shown in Figure 8; this trajectory travels 25% farther than the

original in the same amount of time. The trajectory involves the back leg swinging

high in the air; though this is not plausible for a human, it is perfectly feasible for

the model. It would not be difficult to enforce a more human trajectory by tweaking

the score function.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Figure 8: Trajectory after optimization

5

The state trajectories (Figure 9) and return map (Figure 10) for the optimized con-

troller, are less regular than for the original controller, which was more conserva-

tive.

−4

−2

0

2

α

0.5

1

1.5

y

0 1 2 3 4 5 6
−10

0

10

20

ẋ

Time

Figure 9: State trajectories for optimized
controller

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

ẋ[0]

ẋ
[1
]

Figure 10: Return map for optimized con-
troller

Conclusions

Throughout the course of this project, I developed a simplified system model for a

longboard-riding robot, wrote tools to generate equations of motion, designed high-

level control behavior, and used gradient descent to optimize the controller parame-

ters.

Generating the equations of motion was surprisingly difficult. In particular, I had

difficulty enforcing the straightness of the pushing leg until I came up with the idea

of adding an extra angular spring.

Developing the controller was fairly simple, as I had an high-level idea of what it

needed to do. Using feedback linearization made the control straight-forward, al-

though it doesn’t necessarily enforce realistic limits on force and torque.

Using SGD to optimize the controller parameters worked without too much effort,

although I had to add special cases to catch and discard controllers that produced

pathological behavior.

Overall, I am satisfied with how this project turned out. Though I didn’t apply any

of the more advanced optimization tools, my simple controller performed surprisingly

well and appears to be robust.

6

References

[1] D. Morin, “The Lagrangian Method” in Introduction to Classical Mechanics, Cam-

bridge University Press, 2008.

[2] R. M. Murray et al., “Robot Dynamics and Control” in A Mathematical Intro-

duction to Robotic Manipulation, CRC Press, 1994.

[3] W. A. Stein et al., Sage Mathematics Software (Version 4.8), The Sage Develop-

ment Team, 2012, http://www.sagemath.org.

7

