
Prin%ng:

This poster is 48” wide by 36” high.

It’s designed to be printed on a

large-format printer.

Customizing the Content:

The placeholders in this poster are

formaFed for you. Type in the

placeholders to add text, or click

an icon to add a table, chart,

SmartArt graphic, picture or

mul%media file.

To add or remove bullet points

from text, click the Bullets buFon

on the Home tab.

If you need more placeholders for

%tles, content or body text, make a

copy of what you need and drag it

into place. PowerPoint’s Smart

Guides will help you align it with

everything else.

Want to use your own pictures

instead of ours? No problem! Just

click a picture, press the Delete

key, then click the icon to add your

picture.

Ao: Homoiconic Solid Modeling!
Matt Keeter | matt.keeter@cba.mit.edu

Ao is an open-source CAD tool for homoiconic solid
modeling, optimized for fast CSG and well-suited for
exploratory and experimental design.
It includes a geometry kernel (with solids described as
functional representations) and a set of user-facing tools and
libraries.

Homoiconic design

References

T. Duff, “Interval arithmetic recursive subdivision for implicit functions and constructive solid
geometry,” in Proceedings of the 19th annual conference on Computer graphics and
interactive techniques, ser. SIGGRAPH ’92. New York, NY, USA: ACM, 1992, pp. 131–138.

A. Pasko and V. Adzhiev, “Function-based shape modeling: mathematical framework and
specialized language,” in Automated Deduction in Geometry, Lecture Notes in Artificial
Intelligence 2930, 2004, pp. 132–160.

Digital Materialization Group. Hyperfun. [Online]. Available: http://hyperfun.org/

User-facing Geometry kernel

Library of primitives:
•  Basic shapes
•  Geometric transforms
•  CSG operations

UI with 3D viewport

Automatic tracking of
bounding boxes

Tracing JIT to convert lambda
functions to math trees

Fast evaluator

Export to various formats:
•  Mesh (dual contouring)
•  Heightmap

Overview

Motivation
•  F-rep design offers unique advantages:

•  Easy CSG
•  Continuous deformations and coordinate transforms
•  Easy representations of tiling microstructures

•  Large-scale design (103 to 106+ clauses) with f-reps is largely
unexplored, but CPUs (and GPUs) are now fast enough to
make it thinkable!

•  The Ao kernel is a stable base for further research:
•  Open source
•  C API
•  Unit tests
•  < 10K well-commented LOC

tracing

evaluation
Script

Lambda
function

Math
tree

Image

Mesh
Other
design
tools

Rendering pipeline

High-level example

; Initial 2D pattern!
(define s (difference!
 (circle '(0 0) 0.7)!
 (circle '(0 0) 0.2)))!
!
; Extruded into 3D!
(define e (extrude-z s -0.2 0.2))!
!
; And rotated a few times!
(define model (union e !
 (rotate-x e (/ pi 2))!
 (rotate-y e (/ pi 2))))!

Homoiconic design means that primitive shapes are in the same
language as user-created models. The geometry kernel is invisible:

(define (sphere r)!
 (lambda (x y z) (- (+ (* x x) (* y y) (* z z))!
 (* r r))))!

Using Scheme as the host language makes manipulation of shape
functions easy. Designers can build shapes and transforms that are
hard to express with conventional CAD systems:

(define (spherify f) (lambda (x y z)!
 (let ((scale (/ (max x y z)!
 (sqrt (+ (* x x) (* y y) (* z z))))))!
 (f (/ x scale) (/ y scale) (/ z scale)))))!
!
(define (twist f) (lambda (x y z)!
 (let ((a (* (+ z 1) (/ pi 4)))!
 (b (atan y x))!
 (r (sqrt (+ (* x x) (* y y)))))!
 (f (* r (cos (+ a b))) (* r (sin (+ a b))) z))))!

Rendering is similar to Duff ‘92, updated to take advantage of modern
CPUs (in particular, multithreading and SIMD instructions).

Internal tree representation

Ao’s kernel is based on a data structure for fast
evaluation of arithmetic trees. DAGs of clauses are
sorted topologically and evaluated in order.

Evaluation can happen over:
•  Regions (using interval arithmetic)
•  Voxels (with SIMD for multipoint evaluation)
•  Gradients (using automatic differentiation)

The tracing JIT evaluates the lambda function with
overloaded operations, e.g. + builds an addition
clause in the tree instead of doing normal addition.

min and max clauses are
checked after each interval
evaluation, and inactive
branches are disabled.

For CSG-heavy shapes, this
optimization has a huge
impact on evaluation speeds.

Split top-level region and
assign to threads

Render normals
with automatic
differentiation

Fill and
return Return Recurse

Yes No

< 0 > 0

SIMD per-voxel
evaluation

Below
minimum voxel

count?

Evaluate across
region’s interval

Rendering produces a heightmap and
shaded image, both pixel-perfect at
screen resolution.

A fragment shader on the GPU blends
these images together with proper z-
culling.

