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Ao:  Homoiconic Solid Modeling!
Matt Keeter    |    matt.keeter@cba.mit.edu 

Ao is an open-source CAD tool for homoiconic solid 
modeling, optimized for fast CSG and well-suited for 
exploratory and experimental design. 
It includes a geometry kernel (with solids described as 
functional representations) and a set of user-facing tools and 
libraries. 
 
 

Homoiconic design 
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User-facing Geometry kernel 

Library of primitives: 
•  Basic shapes 
•  Geometric transforms 
•  CSG operations 
 
UI with 3D viewport 
 
Automatic tracking of 
bounding boxes 

Tracing JIT to convert lambda 
functions to math trees 
 
Fast evaluator 
 
Export to various formats: 
•  Mesh (dual contouring) 
•  Heightmap 

Overview 

Motivation 
•  F-rep design offers unique advantages: 

•  Easy CSG 
•  Continuous deformations and coordinate transforms 
•  Easy representations of tiling microstructures 

•  Large-scale design (103 to 106+ clauses) with f-reps is largely 
unexplored, but CPUs (and GPUs) are now fast enough to 
make it thinkable! 

•  The Ao kernel is a stable base for further research: 
•  Open source 
•  C API 
•  Unit tests 
•  < 10K well-commented LOC 
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Rendering pipeline 

High-level example 

; Initial 2D pattern!
(define s (difference!
        (circle '(0 0) 0.7)!
        (circle '(0 0) 0.2)))!
!
; Extruded into 3D!
(define e (extrude-z s -0.2 0.2))!
!
; And rotated a few times!
(define model (union e !
        (rotate-x e (/ pi 2))!
        (rotate-y e (/ pi 2))))!

Homoiconic design means that primitive shapes are in the same 
language as user-created models.  The geometry kernel is invisible: 

(define (sphere r)!
    (lambda (x y z) (- (+ (* x x) (* y y) (* z z))!
                       (* r r))))!
 

Using Scheme as the host language makes manipulation of shape 
functions easy.  Designers can build shapes and transforms that are 
hard to express with conventional CAD systems: 
 
(define (spherify f) (lambda (x y z)!
    (let ((scale (/ (max x y z)!
                    (sqrt (+ (* x x) (* y y) (* z z))))))!
    (f (/ x scale) (/ y scale) (/ z scale)))))!
!
(define (twist f) (lambda (x y z)!
    (let ((a (* (+ z 1) (/ pi 4)))!
          (b (atan y x))!
          (r (sqrt (+ (* x x) (* y y)))))!
   (f (* r (cos (+ a b))) (* r (sin (+ a b))) z))))!
 

Rendering is similar to Duff ‘92, updated to take advantage of modern 
CPUs (in particular, multithreading and SIMD instructions). 

Internal tree representation 

Ao’s kernel is based on a data structure for fast 
evaluation of arithmetic trees. DAGs of clauses are 
sorted topologically and evaluated in order. 
 
Evaluation can happen over: 
•  Regions (using interval arithmetic) 
•  Voxels (with SIMD for multipoint evaluation) 
•  Gradients (using automatic differentiation) 
 
The tracing JIT evaluates the lambda function with 
overloaded operations, e.g. + builds an addition 
clause in the tree instead of doing normal addition. 

min and max clauses are 
checked after each interval 
evaluation, and inactive 
branches are disabled. 
 
For CSG-heavy shapes, this 
optimization has a huge 
impact on evaluation speeds. 
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Rendering produces a heightmap and 
shaded image, both pixel-perfect at 
screen resolution. 
 
A fragment shader on the GPU blends 
these images together with proper z-
culling. 


