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Abstract— Ling adders factor complexity out of the first stage 
of an adder to shorten the critical path. In 2004, Jackson and 
Talwar proposed a generalization of the Ling adder that reduces 
the complexity of the critical generate path at the expense of 
increased complexity in the propagate logic. This paper compares 
implementations of 32-bit Ling and Jackson adders to the 
optimized Sklansky architecture produced by Design Compiler in 
a 45 nm process. The Ling adder is 3% faster and uses 7% less 
energy, achieving a delay of 8.3 FO4 inverters.  The Jackson 
adder is only 1% faster and uses 45% more energy.  However, 
this is the first published implementation of a Jackson adder with 
all details shown. 

 
I. INTRODUCTION 

 
Binary addition is a heavily-studied field because adders are 

often in the critical paths of computing systems [1].  High-
performance adders of 16 bits and larger typically use a prefix 
tree to compute group generate and propagate signals before 
computing the sums from the generate prefixes.  

The industry-standard Design Compiler logic synthesis tool 
from Synopsys generates highly optimized prefix adders with 
a delay of about 9 FO4 inverters for a 32-bit adder. 

Ling described a way to factor out some complexity from 
the initial stage of group generate logic, saving one transistor 
from the critical path [2].  This comes at the cost of more 
complex logic on the non-critical path to precompute inputs to 
a sum-selection multiplexer. Several teams have explored 
Ling adder implementations using standard cell libraries.   
Dimitrakopoulos and Nikolos and Lakshmanan and Othman 
report better results than conventional adders, but they either 
don’t compare directly with the output of Design Compiler or 
they don’t report a normalized FO4 inverter delay [3, 4].  Zhu 
et al. describe a linear programming technique for exploring 
the design space, but report delays of 10 FO4 inverters for a 
16-bit adder [5].  

Jackson and Talwar proposed a generalization to the Ling 
technique that factors out complexity from subsequent group 
generate stages as well [6].  The complexity is transferred into 
the propagate logic as well as into the precomputed sums. The 
technique is applicable to valency-3 or higher cells.  Burgess 
offers notes on implementation issues and concluded that 
Jackson adders could be superior to conventional designs [7].  

At least two designers have indicated that they have built 
Jackson adders exceeding the performance of conventional 
alternatives, but these results have not been published [8, 9]. 

This paper investigates the implementation of 32-bit Ling 
and Jackson adders and compares them to conventional adders 
produced by Design Compiler. We demonstrate small 
performance gains over Design Compiler at the expense of 
considerable energy. Section II defines our terminology for 
conventional prefix addition and shows how the Ling 
technique or higher-valency cells can be used to reduce the 
number of logic levels.  Section III defines the Jackson 
recursion.  Section IV describes the 45 nm process and 
standard cell library used in the comparison.  Section V 
presents the Ling and Jackson implementations.  The results 
are summarized in Section VI. 

 
II. BACKGROUND 

 
Consider adding two N-bit numbers A = {aN, aN-1, …, a1} 

and B = {bN, bN-1, …, b1}, along with a carry-in Cin to produce 
an N-bit sum S, discarding any possible overflow.  A 
conventional prefix adder first defines signals for each bit 
defining whether the bit would generate a carry out (g) or 
propagate a carry.  The propagate term can be computed using 
either an XOR (x) or OR gate (p); it is often handy to use both 
because the OR is simpler and results in a faster prefix tree, 
while the XOR is needed in the final sum logic: 

i i ig a b=                 (1) 

i i ip a b= +                 (2) 

i i ix a b= ⊕                 (3) 
The carry-in is handled with the special case that g0 = Cin. 

Group generate (G) and propagate (P) signals indicating 
whether a group spanning bits i through j generate or 
propagate a carry are then obtained with a valency-2 recursion 
(i > k > j): 

: : : 1:i j i k i k k jG G P G −= +                 (4) 

: : 1:i j i k k jP P P −=                   (5) 
The sums are then determined from the generate prefixes as 



1:0i i is x G −= ⊕                   (6) 
Many alternatives exist for combining the group generate 

and propagate signals.  Design Compiler generates the 
modified Sklansky architecture [10] (sometimes called 
Ladner-Fischer [11]) because it has a minimal number of logic 
levels and no redundant logic, providing high speed and low 
power.  Fig. 1 shows a 16-bit modified Sklansky adder similar 
to the one produced by Design Compiler. The top row 
contains the logic to compute g, p, and x for each bit.  The 
middle of the tree contains the group logic.  Note that black 
cells compute both G and P, while gray cells compute only G 
for cases where P is unnecessary.  The bottom row computes 
the sums with a final XOR.  The design is called modified 
Sklansky because some of the non-critical P and G signals 
(such as G4:0, G5:0, and G6:0) are buffered to reduce the fanout 
on the critical path. 

 

 
Fig. 1: 16-bit modified Sklansky tree 

One logic level could be removed by directly computing 
pairwise group generates and propagates Gi+1:i and Pi+1:i from 
the primary inputs a and b. However, the generate logic is 
overly complex, requiring three series transistors: 

( )
: 1 1

1 1 1 1

i i i i i i

i i i i i i

G g p g
a b a b a b

+ + +

+ + + +

= +

= + +
                (7) 

  Ling proposes defining a pseudogenerate signal, H, such 
that 

: 1:i j i i jH g G −= +                 (8) 
This is simpler than the conventional generate because it strips 
out one propagate term: 

: 1:i j i i i jG g p G −= +                 (9) 
G can be recreated from H with an AND gate: 

: :i j i i jG p H=                 (10) 
Now the pairwise group pseudogenerate logic is simpler and 
requires only two series transistors 

1: 1

1 1

i i i i

i i i i

H g g
a b a b

+ +

+ +

= +
= +

                (11) 

Ling also defines a psuedopropagate signal, I, that is a 
shifted version of the conventional propagate: 

: 1: 1i j i jI P− −=                 (12) 
Now, the valency-2 recursion can be expressed using exactly 
the same logic as with G and P in EQs (4-5), and can be 
computed using exactly the same prefix tree: 

: : : 1:i j i k i k k jH H I H −= +                 (13) 

: : 1:i j i k k jI I I −=                   (14) 
The sums are computed as 

1:0

1 1:0

i i i

i i i

s x G
x p H

−

− −

= ⊕
= ⊕

                (15) 

Because the group pseudogenerates are the critical signal, the 
sum logic can be refactored to use H to select a sum based on 
precomputed options using a multiplexer, thus shifting logic 
off the critical H path: 

[ ]1:0 1? :i i i i is H x p x− −= ⊕                 (16) 
Sparse trees seek to save energy and area by computing the 

prefixes for every mth bit.  Meanwhile, they perform short m-
bit ripples to precompute the results for each m-bit block 
assuming the prefix is 0 and 1.  Ling adders naturally benefit 
from a sparseness of 2 by computing prefixes only in the odd-
numbered columns (e.g. H1:0, H3:0, H5:0, …, H31:0). The sum 
selection logic now contains a pair of multiplexers as shown in 
Fig. 2.  Note that the a and b inputs may be buffered before 
computing x, p, and g to reduce the load on the critical path. 

0101

 
Fig. 2: Ling sum selection for sparseness-2  

Yet another option for reducing the number of logic levels 
in an adder is to combine more than two groups at a time in 
the prefix tree.  For example, the valency-3 recursion (i > k > l 
> j) gives: 

: : : 1: : 1: 1:i j i k i k k l i k k l l jG G P G P P G− − −= + +                 (17) 

: : 1: 1:i j i k k l l jP P P P− −=                   (18) 
The complexity of these terms is high enough that higher 

valency adders tend not to be beneficial in static CMOS 
circuits.  Domino gates are more amenable to complex stacks; 
Hewlett-Packard built very fast domino adders using a 
valency-4 Ling design [12, 13], but domino has been phased 
out due to its high power consumption. 

 
III. THE JACKSON RECURSION 

 
Jackson and Talwar generalized the Ling technique to 

reduce the complexity of the entire prefix tree, rather than just 
the first stage.  The simplification makes higher-valency cells 
more attractive in static logic.  Observe that the valency-3 
generate logic is significantly more complex than the 
propagate logic in EQs (17-18).  Jackson defines reduced 
generate, R, and hyperpropagate, Q, signals that balance these 
complexities and simplify the worst case.  First, we must 
introduce two intermediate signals, D and B. 



Di:j indicates that the group spanning bits i through j either 
generate or propagate a carry: 

: : :i j i j i jD G P= +                 (19) 
Because Pi:j covers the case of generating in bit j and 
propagating through the rest, the logic can be simplified to  

: : 1 :i j i j i jD G P+= +                 (20) 
and in the common special case of one-bit blocks, 

:i i iD p=                 (21) 
Bi:j indicates that the group generates a carry in at least one 

bit: 

:

j

i j k
k i

B g
=

= ∑                 (22) 

Now, the group generate signal can be rewritten as 

: : : 1:i j i k i k k jG D B G −⎡ ⎤= +⎣ ⎦                 (23) 

In other words, the group generates a carry if the upper part 
either generates or propagates and either at least one bit of the 
upper part generates (indicating that the upper as a whole 
generates), or the lower part generates. 

The bracketed term is called the reduced generate signal, R: 

: : 1 :
p

i j i i p i p jR B G− + −= +                 (24) 
It can be viewed as G with the top p propagate signals stripped 
out.  The special cases of p = 0 and p = 1 correspond to the 
conventional generate and the Ling pseudogenerate signals, 
while Jackson adders permit further reductions of p ≥ 2. 

0
: :i j i jR G=                 (25) 
1
: :i j i jR H=                 (26) 

 The ordinary group generate is recovered from the reduced 
generate using D; greater reduction of R requires a larger D 
term.  EQ (23) can be rewritten using R as 

: : 1 :
p

i j i i p i jG D R− +=                 (27) 
Jackson also defines a hyperpropagate signal, Q, to 

complete the recursion: 

: : 1 :
p

i j i i p i p jQ P D− + −=                 (28) 
The frequently used special cases of p = 1 or 2 for two-bit 

groups correspond to the ordinary propagate signal, while p > 
2 produces more complex logic. 

1 2
1: 1: 1:i i i i i iQ Q P+ + += =                 (29) 

Jackson derives a valency-3 recursion using R and Q: 
1 1

: : 1: 1: 1:
i p i k k p p l l m
i j i k k l p m l jR R R Q R+ − + − − − −

− − −= + +                 (30) 
1 1

: : 1: 1: 1:
i p i k k p p l l m
i j i k k l p m l jQ Q Q R Q+ − + − − − −

− − −⎡ ⎤= +⎣ ⎦       (31) 

As compared to EQs (17-18), these terms are better balanced, 
and the larger of the two terms is less complicated. 

Jackson omits the valency-2 recursion needed for some of 
the intermediate terms in a prefix adder, but it is similar and 
can be proved by expanding both sides in terms of B, G, P, 
and D.  Unfortunately, the recursion is no simpler than the 
ordinary valency-2 PG logic from EQs (4-5). 

1
: : : 1:
p p i p k q

i j i k i p k q k jR R Q R− − +
− − −= +                 (32) 

( )1
: : : 1:
p p i p k q

i j i k i p k q k jQ Q R Q− − +
− − −= +       (33) 

However, Burgess described a simpler valency-2 recursion 
that is sometimes helpful [7]. 

1
: : 1:
i k q p q
i j i k k jR R R− + +

−= +                 (34) 
Jackson also neglects to explicitly define the recursion for D 

for large groups: 
1

: : 1 : :
p i k p

i j i i p i k i p jD D R Q − − +
− + −⎡ ⎤= +⎣ ⎦       (35) 

This is proved in the appendix. 
Jackson describes computing G31:0 using a Ling-style first 

stage to compute pairs followed by two valency-4 stages, but 
does not provide the logic for a complete adder.  Burgess 
describes implementing a 24-bit adder using Jackson 
techniques but only shows some of the details.  The next two 
sections of this paper describe standard cell implementations 
of a 32-bit static adder using the Jackson R/Q equations in a 
45 nm process. 
 

IV. COMPARISON METHODOLOGY 
 

One of the challenges in comparing circuits is to ensure that 
the novel circuit is fairly compared to the best known 
implementation of the conventional circuit [14]. For this 
reason, we use Synopsys Design Compiler and compare 
against a synthesized version of a behavioral description, 
assign y = a + b.  We will refer to this as the 
behavioral adder. 

The adders are synthesized onto the ARM standard cell 
library for a 45 nm partially-depleted SOI process.  The library 
uses regular-Vt transistors and a 12 track cell height (1.68 
μm).  It contains a rich set of complex gates including the 
AOI211 and OAI211 gates used in a valency-3 Jackson 
recursion. Timing is characterized in the SS corner at 0.9 V, 
125 C.  The fanout-of-4 inverter delay (FO4) is 15.0 ps, 
corresponding to τ = 3.0 ps [1].  A unit-sized (X1) inverter has 
an input capacitance of 1.6 fF and switching energy of 0.78 fJ. 
The inputs are driven by an X4 inverter and the outputs are 
loaded by the capacitance of X4 inverters.  

Design Compiler recommends the compile_ultra 
command for standard high-performance synthesis.  We also 
evaluated using the –inc option for incremental resynthesis to 
improve performance at the expense of area. The results 
displayed 1-2% variation in timing depending on the timing 
constraints, so we swept timing constraints and selected the 
best results for each design. To accurately account for routing, 
the synthesized netlist was passed to Synopsys IC Compiler 
for placement, routing, and parasitic estimation. The inputs 
and outputs are constrained to appear in 32 ordered rows with 
a pitch of one cell per row.  Layout utilization is set to 70%, 
which produces good timing results.    

When synthesizing a 32-bit behavioral adder to be as fast as 
possible, Design Compiler produces the modified Sklansky 
adder like that of Fig. 1 extended to 32 bits; we will call this a 
conventional design.  The gray cells are built using alternating 



AOI21 and OAI21 cells according to DeMorgan’s Law. The 
least significant bits have minor logical optimizations to 
handle the carry-in, and various gates are cloned to optimize 
the critical and non-critical paths.  Logical Effort analysis [15] 
of the critical path predicts a delay of 8.9 FO4. 
 

V. IMPLEMENTATIONS 
 
This section describes two static 32-bit adder 

implementations including a valency-2 Ling adder and a 
mixed-valency Jackson adder.  All designs were verified for 
logical correctness using directed and random vectors. 

 
A. Ling Adder 

 
Figure 3 shows the organization of a 32-bit Ling adder using 

a modified Sklansky tree.  The first row computes the H and I 
signals for each pair of bits.  The sparseness-2 prefix tree 
looks just like the modified Sklansky tree from Fig. 1 except 
that the groups are twice as wide.  The sum is selected for 
each pair of bits using the circuitry from Fig. 2.  
 

 
Fig. 3: 32-bit Ling adder using modified Sklansky tree 

This design has six logic levels, as compared to seven in the 
conventional adder.  The first level uses compound AOI22 and 
OAI22 cells to produce the 2-bit H and I signals.  The next 
levels use alternating OAI21 and AOI21 gates, as in the 
conventional adder.  Each prefix drives a pair of inverting 
sum-selection multiplexers. If buffered loads present 
negligible capacitance, the branching effort is 16, just as in a 
conventional adder.  The initial stage is slightly more complex 
than in a conventional adder but the number of stages is one 
fewer.  Logical Effort calculations predict that the overall 
delay should be comparable to that of the conventional adder. 
 

B. Jackson 2-3-3-2 Adder 
 

Jackson adders have a huge space of possible architectures 
and circuit implementations [4].  A straightforward approach 
is to use a modified sparseness-2 Sklansky tree like that of the 
Ling adder, but to replace three levels of valency-2 cells with 
two levels of valency-3 cells to reduce the number of logic 
levels to 5.  Such an architecture could handle up to 2 × 3 × 3 
× 2 = 36 bits, but the top four bits are truncated to perform 32-
bit addition.   

Directly applying the Jackson equations yields the prefix 
tree shown in Fig. 4.  The sum precomputation and D logic 

take place in the ovals above the sum selection multiplexers. 
The signals on the critical path from a14 to s31 have a high 
fanout at each stage, resulting in long delay.  Both Logical 
Effort analysis and synthesis results show such an 
implementation is unattractive. The critical path reported by 
IC Compiler is highlighted. 

Note that 4
24:21Q and 6

26:21Q used in the third stage do not 

exist.  Instead, we substitute 1
24:21Q and 3

26:21Q , which have 
extraneous G terms that are later covered by R terms [7].  

Fig. 5 shows a heavily refactored Jackson adder that 
optimizes the critical path in a variety of ways.  It was arrived 
at after extensive manual exploration of the design space using 
Logical Effort and synthesis. More complexity is factored out 
of the upper R terms by exploiting EQ (34), pushing it into 
larger D terms. Noncritical signals are buffered so that they do 
not load the critical path.  Italicized signals are buffered from 
the first stage but the buffers are not shown to avoid cluttering 
the diagram. The logic computing 9

26:9Q , 3
20:9Q , 1

18:9Q  and 

D17:9 all share a small NOR gate to combine 3
17:12R  and 3

14:9Q  

without heavily loading the critical path through 9
17:0R . The 

dangling 5
25:18R signal is used in the D logic.  

In parallel, relatively simple gates compute the x, p, g, and 
D signals required for the precomputed sums. These would 
clutter the diagram, so they are described below in equation 
form and are implemented with up to four levels of 2-input 
NANDs and NORs. 
 
D Logic 

  :i i iD p=  for i = 1, 3, 7, 9, 19 

  
3 1 1
2 3:2 2 3:2 2 2 1:2i i i i i iR R R+ + + += +  for i = 6, 10, 11, 12, 13

 

1 1
5:3 5 5:4 4:3

1 1
11:9 11 11:10 10:9

3 1 1 1 3 1
13:9 13:11 13:12 12:9 13 13:12 12:11 13:12 12:9

3 1 1 1 3 1
15:9 15:13 15:12 12:9 15 15:14 14:13 15:12 12:9

17:9 17

D p R Q

D p R Q

D D R Q p R Q R Q

D D R Q p R Q R Q

D D

⎡ ⎤= +⎣ ⎦
⎡ ⎤= +⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= 3 3 1 1 3 3
:15 17:12 14:9 17 17:16 16:15 17:12 14:9

1 1
21:19 21 21:20 20:19

3 1 1 1 3 1
23:19 23:21 23:20 20:19 23 23:22 22:21 23:20 20:19

3 1
25:21 25:23 25:22 22:21 2

R Q p R Q R Q

D p R Q

D D R Q p R Q R Q

D D R Q p

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤= +⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤= + =⎣ ⎦

1 1 3 1
5 25:24 24:23 25:22 22:21

3 1 1 1 3 1
27:21 27:25 27:24 24:21 27 27:26 26:25 27:24 24:21

3 1 1 1 3 1
29:25 29:27 29:26 26:25 29 29:28 28:27 29:26 26:25

31:27 31 31

R Q R Q

D D R Q p R Q R Q

D D R Q p R Q R Q

D p R

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ( )1 1 1 1 1 1
:30 30:27 31 31:30 30:29 28:27 29:28Q p R Q Q R⎡ ⎤⎡ ⎤+ = + +⎣ ⎦ ⎣ ⎦

 
 
 



Misc. 1-bit signals for Sum: (i = 0 … 15) 

2 1 2 1 2 1 2 1 2 1 2 1

2 2 2 2 2 2

i i i i i i

i i i i i i

x A B p A B
x A B g A B
+ + + + + += ⊕ = +
= ⊕ =

 

Sum Selection   

( )
1 1 0

5
32 31:0 32 31:27 32? :

s x a

s R x D x

= ⊕

= ⊕
 

Middle cells:  i = 1 ... 15 

( )
( )( )

( )

2 2 1:0 2 2 1:2 2

2 1 2 1:0 2 1 2 1:2 2 2

2 1 2

? :

? :

p
i i i i i p i

p
i i i i i p i i

i i

s R x D x

s R x D x g

x g

− − −

+ − + − −

+

= ⊕

= ⊕ +

⊕

 

 

Fig. 6 shows the circuit-level implementations of each of the 
cells. In a valency-2 stage, l and u refer to the lower and upper 
groups.  In valency-3, x refers to the third (most significant) 
group. The second and third stages are noninverting, each 
using two levels of logic and thus allowing sharing of 
common terms.  The extra logic levels also help drive the 
larger fanout on the branching paths. The first stage must be 
noninverting to produce NANDs rather than NORs on the 
critical path in the later stages.  The fourth stage and final 
multiplexer are inverting to reduce parasitic delay. Logical 
Effort predicts a delay of 8.4 FO4 along the critical path 
identified by IC Compiler. 

 
VI. RESULTS 

 
Table 2 summarizes the post-layout delay, energy, and area 

results for the architectures considered.   
 
Table 2: Comparison of 32-bit adder results 

 Behavioral  Behavioral Ling Jackson 2332 
Compiler 
Option 

ultra –inc –inc –inc 

Delay (ps) 130.2 128.4 124.4 127.6 
Energy (fJ) 796 1016 938 1469 
Area (μm2) 606 797 682 1053 
 

The behavioral adder results are quite good and took months 
of design refinements to beat.  The behavioral adder 
synthesized with Design Compiler Ultra achieved 8.7 FO4 
delays including layout parasitic. Applying incremental 
synthesis achieved a 1.4% speedup at a ~30% increase in 
energy and area. The Ling adder offers a further 3% speedup 
and 7% energy reduction relative to the fastest (incremental) 
behavioral adder.  The Jackson adder was also faster, but we 
were unable to produce results better than Ling. The Ling and 
Jackson adders with better delay results had to be specified as 
a structural netlist; Design Compiler was unable to achieve 
such good results with a more abstract description such as 
Boolean equations.  Moreover, the Jackson adder required 
initial sizing in the structural netlist to achieve good results. 
 

VII. CONCLUSIONS 
 

Design Compiler is the industry standard logic synthesis 
tool.  The quality of the arithmetic circuits it generates is now 
very high.  This paper has investigated applying the Ling and 
Jackson techniques to produce even faster adders.   

This paper has described a 32-bit Ling adder using a 
sparseness-2 modified Sklansky tree to achieve a post-layout 
delay of 8.3 FO4 in a 45 nm process. This is 3% faster at 7% 
less energy than the best that Design Compiler produces from 
a behavioral description of y = a + b. 

This paper has presented the first published implementation 
of a Jackson adder with all details shown. The adder also uses 
a sparseness-2 modified Sklansky tree with a mix of valency-2 
and valency-3 stages to save one level of logic relative to 
Ling.  The synthesis results are 1% faster than the behavioral 
adder but consume significantly more energy. 

Ideas for future work include exploring truncating the 
bottom rather than top four bits to simplify the critical R signal 
in a Jackson 2-3-3-2 architecture, investigating two-stage 
valency-4 gates, and determining whether Jackson adders hold 
greater benefit at 64 bits.  The Ling and Jackson adders were 
carefully designed for delay but not tuned for energy; potential 
remains to reduce the energy by optimizing noncritical paths. 
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APPENDIX: PROOF OF D RECURSION 
 
To prove EQ (35), expand both sides in terms of G and P and then combine 

terms and simplify: 

( )( )( )

1
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1
: : 1 :

: : 1 : 1 : 1: 1:
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Fig. 4: 32-bit Jackson 2-3-3-2 adder using modified Sklansky tree 

Fig. 5: Optimized 32-bit Jackson 2-3-3-2 adder 

 
Fig. 6: Cell designs for optimized Jackson adder 


