
Implementation of 32-bit
Ling and Jackson Adders

Matthew Keeter, David Money Harris, Andrew Macrae, Rebecca Glick, Madeleine Ong,

and Justin Schauer*
Harvey Mudd College

301 Platt Blvd. Claremont, CA 91711
 {Matthew_Keeter, David_Harris}@hmc.edu

* Oracle Redwood Shores, CA

Abstract— Ling adders factor complexity out of the first stage
of an adder to shorten the critical path. In 2004, Jackson and
Talwar proposed a generalization of the Ling adder that reduces
the complexity of the critical generate path at the expense of
increased complexity in the propagate logic. This paper compares
implementations of 32-bit Ling and Jackson adders to the
optimized Sklansky architecture produced by Design Compiler in
a 45 nm process. The Ling adder is 3% faster and uses 7% less
energy, achieving a delay of 8.3 FO4 inverters. The Jackson
adder is only 1% faster and uses 45% more energy. However,
this is the first published implementation of a Jackson adder with
all details shown.

I. INTRODUCTION

Binary addition is a heavily-studied field because adders are

often in the critical paths of computing systems [1]. High-
performance adders of 16 bits and larger typically use a prefix
tree to compute group generate and propagate signals before
computing the sums from the generate prefixes.

The industry-standard Design Compiler logic synthesis tool
from Synopsys generates highly optimized prefix adders with
a delay of about 9 FO4 inverters for a 32-bit adder.

Ling described a way to factor out some complexity from
the initial stage of group generate logic, saving one transistor
from the critical path [2]. This comes at the cost of more
complex logic on the non-critical path to precompute inputs to
a sum-selection multiplexer. Several teams have explored
Ling adder implementations using standard cell libraries.
Dimitrakopoulos and Nikolos and Lakshmanan and Othman
report better results than conventional adders, but they either
don’t compare directly with the output of Design Compiler or
they don’t report a normalized FO4 inverter delay [3, 4]. Zhu
et al. describe a linear programming technique for exploring
the design space, but report delays of 10 FO4 inverters for a
16-bit adder [5].

Jackson and Talwar proposed a generalization to the Ling
technique that factors out complexity from subsequent group
generate stages as well [6]. The complexity is transferred into
the propagate logic as well as into the precomputed sums. The
technique is applicable to valency-3 or higher cells. Burgess
offers notes on implementation issues and concluded that
Jackson adders could be superior to conventional designs [7].

At least two designers have indicated that they have built
Jackson adders exceeding the performance of conventional
alternatives, but these results have not been published [8, 9].

This paper investigates the implementation of 32-bit Ling
and Jackson adders and compares them to conventional adders
produced by Design Compiler. We demonstrate small
performance gains over Design Compiler at the expense of
considerable energy. Section II defines our terminology for
conventional prefix addition and shows how the Ling
technique or higher-valency cells can be used to reduce the
number of logic levels. Section III defines the Jackson
recursion. Section IV describes the 45 nm process and
standard cell library used in the comparison. Section V
presents the Ling and Jackson implementations. The results
are summarized in Section VI.

II. BACKGROUND

Consider adding two N-bit numbers A = {aN, aN-1, …, a1}

and B = {bN, bN-1, …, b1}, along with a carry-in Cin to produce
an N-bit sum S, discarding any possible overflow. A
conventional prefix adder first defines signals for each bit
defining whether the bit would generate a carry out (g) or
propagate a carry. The propagate term can be computed using
either an XOR (x) or OR gate (p); it is often handy to use both
because the OR is simpler and results in a faster prefix tree,
while the XOR is needed in the final sum logic:

i i ig a b= (1)

i i ip a b= + (2)

i i ix a b= ⊕ (3)
The carry-in is handled with the special case that g0 = Cin.

Group generate (G) and propagate (P) signals indicating
whether a group spanning bits i through j generate or
propagate a carry are then obtained with a valency-2 recursion
(i > k > j):

: : : 1:i j i k i k k jG G P G −= + (4)

: : 1:i j i k k jP P P −= (5)
The sums are then determined from the generate prefixes as

1:0i i is x G −= ⊕ (6)
Many alternatives exist for combining the group generate

and propagate signals. Design Compiler generates the
modified Sklansky architecture [10] (sometimes called
Ladner-Fischer [11]) because it has a minimal number of logic
levels and no redundant logic, providing high speed and low
power. Fig. 1 shows a 16-bit modified Sklansky adder similar
to the one produced by Design Compiler. The top row
contains the logic to compute g, p, and x for each bit. The
middle of the tree contains the group logic. Note that black
cells compute both G and P, while gray cells compute only G
for cases where P is unnecessary. The bottom row computes
the sums with a final XOR. The design is called modified
Sklansky because some of the non-critical P and G signals
(such as G4:0, G5:0, and G6:0) are buffered to reduce the fanout
on the critical path.

Fig. 1: 16-bit modified Sklansky tree

One logic level could be removed by directly computing
pairwise group generates and propagates Gi+1:i and Pi+1:i from
the primary inputs a and b. However, the generate logic is
overly complex, requiring three series transistors:

()
: 1 1

1 1 1 1

i i i i i i

i i i i i i

G g p g
a b a b a b

+ + +

+ + + +

= +

= + +
 (7)

 Ling proposes defining a pseudogenerate signal, H, such
that

: 1:i j i i jH g G −= + (8)
This is simpler than the conventional generate because it strips
out one propagate term:

: 1:i j i i i jG g p G −= + (9)
G can be recreated from H with an AND gate:

: :i j i i jG p H= (10)
Now the pairwise group pseudogenerate logic is simpler and
requires only two series transistors

1: 1

1 1

i i i i

i i i i

H g g
a b a b

+ +

+ +

= +
= +

 (11)

Ling also defines a psuedopropagate signal, I, that is a
shifted version of the conventional propagate:

: 1: 1i j i jI P− −= (12)
Now, the valency-2 recursion can be expressed using exactly
the same logic as with G and P in EQs (4-5), and can be
computed using exactly the same prefix tree:

: : : 1:i j i k i k k jH H I H −= + (13)

: : 1:i j i k k jI I I −= (14)
The sums are computed as

1:0

1 1:0

i i i

i i i

s x G
x p H

−

− −

= ⊕
= ⊕

 (15)

Because the group pseudogenerates are the critical signal, the
sum logic can be refactored to use H to select a sum based on
precomputed options using a multiplexer, thus shifting logic
off the critical H path:

[]1:0 1? :i i i i is H x p x− −= ⊕ (16)
Sparse trees seek to save energy and area by computing the

prefixes for every mth bit. Meanwhile, they perform short m-
bit ripples to precompute the results for each m-bit block
assuming the prefix is 0 and 1. Ling adders naturally benefit
from a sparseness of 2 by computing prefixes only in the odd-
numbered columns (e.g. H1:0, H3:0, H5:0, …, H31:0). The sum
selection logic now contains a pair of multiplexers as shown in
Fig. 2. Note that the a and b inputs may be buffered before
computing x, p, and g to reduce the load on the critical path.

0101

Fig. 2: Ling sum selection for sparseness-2

Yet another option for reducing the number of logic levels
in an adder is to combine more than two groups at a time in
the prefix tree. For example, the valency-3 recursion (i > k > l
> j) gives:

: : : 1: : 1: 1:i j i k i k k l i k k l l jG G P G P P G− − −= + + (17)

: : 1: 1:i j i k k l l jP P P P− −= (18)
The complexity of these terms is high enough that higher

valency adders tend not to be beneficial in static CMOS
circuits. Domino gates are more amenable to complex stacks;
Hewlett-Packard built very fast domino adders using a
valency-4 Ling design [12, 13], but domino has been phased
out due to its high power consumption.

III. THE JACKSON RECURSION

Jackson and Talwar generalized the Ling technique to

reduce the complexity of the entire prefix tree, rather than just
the first stage. The simplification makes higher-valency cells
more attractive in static logic. Observe that the valency-3
generate logic is significantly more complex than the
propagate logic in EQs (17-18). Jackson defines reduced
generate, R, and hyperpropagate, Q, signals that balance these
complexities and simplify the worst case. First, we must
introduce two intermediate signals, D and B.

Di:j indicates that the group spanning bits i through j either
generate or propagate a carry:

: : :i j i j i jD G P= + (19)
Because Pi:j covers the case of generating in bit j and
propagating through the rest, the logic can be simplified to

: : 1 :i j i j i jD G P+= + (20)
and in the common special case of one-bit blocks,

:i i iD p= (21)
Bi:j indicates that the group generates a carry in at least one

bit:

:

j

i j k
k i

B g
=

= ∑ (22)

Now, the group generate signal can be rewritten as

: : : 1:i j i k i k k jG D B G −⎡ ⎤= +⎣ ⎦ (23)

In other words, the group generates a carry if the upper part
either generates or propagates and either at least one bit of the
upper part generates (indicating that the upper as a whole
generates), or the lower part generates.

The bracketed term is called the reduced generate signal, R:

: : 1 :
p

i j i i p i p jR B G− + −= + (24)
It can be viewed as G with the top p propagate signals stripped
out. The special cases of p = 0 and p = 1 correspond to the
conventional generate and the Ling pseudogenerate signals,
while Jackson adders permit further reductions of p ≥ 2.

0
: :i j i jR G= (25)
1
: :i j i jR H= (26)

 The ordinary group generate is recovered from the reduced
generate using D; greater reduction of R requires a larger D
term. EQ (23) can be rewritten using R as

: : 1 :
p

i j i i p i jG D R− += (27)
Jackson also defines a hyperpropagate signal, Q, to

complete the recursion:

: : 1 :
p

i j i i p i p jQ P D− + −= (28)
The frequently used special cases of p = 1 or 2 for two-bit

groups correspond to the ordinary propagate signal, while p >
2 produces more complex logic.

1 2
1: 1: 1:i i i i i iQ Q P+ + += = (29)

Jackson derives a valency-3 recursion using R and Q:
1 1

: : 1: 1: 1:
i p i k k p p l l m
i j i k k l p m l jR R R Q R+ − + − − − −

− − −= + + (30)
1 1

: : 1: 1: 1:
i p i k k p p l l m
i j i k k l p m l jQ Q Q R Q+ − + − − − −

− − −⎡ ⎤= +⎣ ⎦ (31)

As compared to EQs (17-18), these terms are better balanced,
and the larger of the two terms is less complicated.

Jackson omits the valency-2 recursion needed for some of
the intermediate terms in a prefix adder, but it is similar and
can be proved by expanding both sides in terms of B, G, P,
and D. Unfortunately, the recursion is no simpler than the
ordinary valency-2 PG logic from EQs (4-5).

1
: : : 1:
p p i p k q

i j i k i p k q k jR R Q R− − +
− − −= + (32)

()1
: : : 1:
p p i p k q

i j i k i p k q k jQ Q R Q− − +
− − −= + (33)

However, Burgess described a simpler valency-2 recursion
that is sometimes helpful [7].

1
: : 1:
i k q p q
i j i k k jR R R− + +

−= + (34)
Jackson also neglects to explicitly define the recursion for D

for large groups:
1

: : 1 : :
p i k p

i j i i p i k i p jD D R Q − − +
− + −⎡ ⎤= +⎣ ⎦ (35)

This is proved in the appendix.
Jackson describes computing G31:0 using a Ling-style first

stage to compute pairs followed by two valency-4 stages, but
does not provide the logic for a complete adder. Burgess
describes implementing a 24-bit adder using Jackson
techniques but only shows some of the details. The next two
sections of this paper describe standard cell implementations
of a 32-bit static adder using the Jackson R/Q equations in a
45 nm process.

IV. COMPARISON METHODOLOGY

One of the challenges in comparing circuits is to ensure that
the novel circuit is fairly compared to the best known
implementation of the conventional circuit [14]. For this
reason, we use Synopsys Design Compiler and compare
against a synthesized version of a behavioral description,
assign y = a + b. We will refer to this as the
behavioral adder.

The adders are synthesized onto the ARM standard cell
library for a 45 nm partially-depleted SOI process. The library
uses regular-Vt transistors and a 12 track cell height (1.68
μm). It contains a rich set of complex gates including the
AOI211 and OAI211 gates used in a valency-3 Jackson
recursion. Timing is characterized in the SS corner at 0.9 V,
125 C. The fanout-of-4 inverter delay (FO4) is 15.0 ps,
corresponding to τ = 3.0 ps [1]. A unit-sized (X1) inverter has
an input capacitance of 1.6 fF and switching energy of 0.78 fJ.
The inputs are driven by an X4 inverter and the outputs are
loaded by the capacitance of X4 inverters.

Design Compiler recommends the compile_ultra
command for standard high-performance synthesis. We also
evaluated using the –inc option for incremental resynthesis to
improve performance at the expense of area. The results
displayed 1-2% variation in timing depending on the timing
constraints, so we swept timing constraints and selected the
best results for each design. To accurately account for routing,
the synthesized netlist was passed to Synopsys IC Compiler
for placement, routing, and parasitic estimation. The inputs
and outputs are constrained to appear in 32 ordered rows with
a pitch of one cell per row. Layout utilization is set to 70%,
which produces good timing results.

When synthesizing a 32-bit behavioral adder to be as fast as
possible, Design Compiler produces the modified Sklansky
adder like that of Fig. 1 extended to 32 bits; we will call this a
conventional design. The gray cells are built using alternating

AOI21 and OAI21 cells according to DeMorgan’s Law. The
least significant bits have minor logical optimizations to
handle the carry-in, and various gates are cloned to optimize
the critical and non-critical paths. Logical Effort analysis [15]
of the critical path predicts a delay of 8.9 FO4.

V. IMPLEMENTATIONS

This section describes two static 32-bit adder

implementations including a valency-2 Ling adder and a
mixed-valency Jackson adder. All designs were verified for
logical correctness using directed and random vectors.

A. Ling Adder

Figure 3 shows the organization of a 32-bit Ling adder using

a modified Sklansky tree. The first row computes the H and I
signals for each pair of bits. The sparseness-2 prefix tree
looks just like the modified Sklansky tree from Fig. 1 except
that the groups are twice as wide. The sum is selected for
each pair of bits using the circuitry from Fig. 2.

Fig. 3: 32-bit Ling adder using modified Sklansky tree

This design has six logic levels, as compared to seven in the
conventional adder. The first level uses compound AOI22 and
OAI22 cells to produce the 2-bit H and I signals. The next
levels use alternating OAI21 and AOI21 gates, as in the
conventional adder. Each prefix drives a pair of inverting
sum-selection multiplexers. If buffered loads present
negligible capacitance, the branching effort is 16, just as in a
conventional adder. The initial stage is slightly more complex
than in a conventional adder but the number of stages is one
fewer. Logical Effort calculations predict that the overall
delay should be comparable to that of the conventional adder.

B. Jackson 2-3-3-2 Adder

Jackson adders have a huge space of possible architectures
and circuit implementations [4]. A straightforward approach
is to use a modified sparseness-2 Sklansky tree like that of the
Ling adder, but to replace three levels of valency-2 cells with
two levels of valency-3 cells to reduce the number of logic
levels to 5. Such an architecture could handle up to 2 × 3 × 3
× 2 = 36 bits, but the top four bits are truncated to perform 32-
bit addition.

Directly applying the Jackson equations yields the prefix
tree shown in Fig. 4. The sum precomputation and D logic

take place in the ovals above the sum selection multiplexers.
The signals on the critical path from a14 to s31 have a high
fanout at each stage, resulting in long delay. Both Logical
Effort analysis and synthesis results show such an
implementation is unattractive. The critical path reported by
IC Compiler is highlighted.

Note that 4
24:21Q and 6

26:21Q used in the third stage do not

exist. Instead, we substitute 1
24:21Q and 3

26:21Q , which have
extraneous G terms that are later covered by R terms [7].

Fig. 5 shows a heavily refactored Jackson adder that
optimizes the critical path in a variety of ways. It was arrived
at after extensive manual exploration of the design space using
Logical Effort and synthesis. More complexity is factored out
of the upper R terms by exploiting EQ (34), pushing it into
larger D terms. Noncritical signals are buffered so that they do
not load the critical path. Italicized signals are buffered from
the first stage but the buffers are not shown to avoid cluttering
the diagram. The logic computing 9

26:9Q , 3
20:9Q , 1

18:9Q and

D17:9 all share a small NOR gate to combine 3
17:12R and 3

14:9Q

without heavily loading the critical path through 9
17:0R . The

dangling 5
25:18R signal is used in the D logic.

In parallel, relatively simple gates compute the x, p, g, and
D signals required for the precomputed sums. These would
clutter the diagram, so they are described below in equation
form and are implemented with up to four levels of 2-input
NANDs and NORs.

D Logic

 :i i iD p= for i = 1, 3, 7, 9, 19

3 1 1
2 3:2 2 3:2 2 2 1:2i i i i i iR R R+ + + += + for i = 6, 10, 11, 12, 13

1 1
5:3 5 5:4 4:3

1 1
11:9 11 11:10 10:9

3 1 1 1 3 1
13:9 13:11 13:12 12:9 13 13:12 12:11 13:12 12:9

3 1 1 1 3 1
15:9 15:13 15:12 12:9 15 15:14 14:13 15:12 12:9

17:9 17

D p R Q

D p R Q

D D R Q p R Q R Q

D D R Q p R Q R Q

D D

⎡ ⎤= +⎣ ⎦
⎡ ⎤= +⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= 3 3 1 1 3 3
:15 17:12 14:9 17 17:16 16:15 17:12 14:9

1 1
21:19 21 21:20 20:19

3 1 1 1 3 1
23:19 23:21 23:20 20:19 23 23:22 22:21 23:20 20:19

3 1
25:21 25:23 25:22 22:21 2

R Q p R Q R Q

D p R Q

D D R Q p R Q R Q

D D R Q p

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤= +⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤= + =⎣ ⎦

1 1 3 1
5 25:24 24:23 25:22 22:21

3 1 1 1 3 1
27:21 27:25 27:24 24:21 27 27:26 26:25 27:24 24:21

3 1 1 1 3 1
29:25 29:27 29:26 26:25 29 29:28 28:27 29:26 26:25

31:27 31 31

R Q R Q

D D R Q p R Q R Q

D D R Q p R Q R Q

D p R

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ()1 1 1 1 1 1
:30 30:27 31 31:30 30:29 28:27 29:28Q p R Q Q R⎡ ⎤⎡ ⎤+ = + +⎣ ⎦ ⎣ ⎦

Misc. 1-bit signals for Sum: (i = 0 … 15)

2 1 2 1 2 1 2 1 2 1 2 1

2 2 2 2 2 2

i i i i i i

i i i i i i

x A B p A B
x A B g A B
+ + + + + += ⊕ = +
= ⊕ =

Sum Selection

()
1 1 0

5
32 31:0 32 31:27 32? :

s x a

s R x D x

= ⊕

= ⊕

Middle cells: i = 1 ... 15

()
()()

()

2 2 1:0 2 2 1:2 2

2 1 2 1:0 2 1 2 1:2 2 2

2 1 2

? :

? :

p
i i i i i p i

p
i i i i i p i i

i i

s R x D x

s R x D x g

x g

− − −

+ − + − −

+

= ⊕

= ⊕ +

⊕

Fig. 6 shows the circuit-level implementations of each of the
cells. In a valency-2 stage, l and u refer to the lower and upper
groups. In valency-3, x refers to the third (most significant)
group. The second and third stages are noninverting, each
using two levels of logic and thus allowing sharing of
common terms. The extra logic levels also help drive the
larger fanout on the branching paths. The first stage must be
noninverting to produce NANDs rather than NORs on the
critical path in the later stages. The fourth stage and final
multiplexer are inverting to reduce parasitic delay. Logical
Effort predicts a delay of 8.4 FO4 along the critical path
identified by IC Compiler.

VI. RESULTS

Table 2 summarizes the post-layout delay, energy, and area

results for the architectures considered.

Table 2: Comparison of 32-bit adder results

 Behavioral Behavioral Ling Jackson 2332
Compiler
Option

ultra –inc –inc –inc

Delay (ps) 130.2 128.4 124.4 127.6
Energy (fJ) 796 1016 938 1469
Area (μm2) 606 797 682 1053

The behavioral adder results are quite good and took months
of design refinements to beat. The behavioral adder
synthesized with Design Compiler Ultra achieved 8.7 FO4
delays including layout parasitic. Applying incremental
synthesis achieved a 1.4% speedup at a ~30% increase in
energy and area. The Ling adder offers a further 3% speedup
and 7% energy reduction relative to the fastest (incremental)
behavioral adder. The Jackson adder was also faster, but we
were unable to produce results better than Ling. The Ling and
Jackson adders with better delay results had to be specified as
a structural netlist; Design Compiler was unable to achieve
such good results with a more abstract description such as
Boolean equations. Moreover, the Jackson adder required
initial sizing in the structural netlist to achieve good results.

VII. CONCLUSIONS

Design Compiler is the industry standard logic synthesis
tool. The quality of the arithmetic circuits it generates is now
very high. This paper has investigated applying the Ling and
Jackson techniques to produce even faster adders.

This paper has described a 32-bit Ling adder using a
sparseness-2 modified Sklansky tree to achieve a post-layout
delay of 8.3 FO4 in a 45 nm process. This is 3% faster at 7%
less energy than the best that Design Compiler produces from
a behavioral description of y = a + b.

This paper has presented the first published implementation
of a Jackson adder with all details shown. The adder also uses
a sparseness-2 modified Sklansky tree with a mix of valency-2
and valency-3 stages to save one level of logic relative to
Ling. The synthesis results are 1% faster than the behavioral
adder but consume significantly more energy.

Ideas for future work include exploring truncating the
bottom rather than top four bits to simplify the critical R signal
in a Jackson 2-3-3-2 architecture, investigating two-stage
valency-4 gates, and determining whether Jackson adders hold
greater benefit at 64 bits. The Ling and Jackson adders were
carefully designed for delay but not tuned for energy; potential
remains to reduce the energy by optimizing noncritical paths.

ACKNOWLEDGMENTS

This work was supported by a grant from Oracle and by the
Clay-Wolkin Fellowship at Harvey Mudd College.

REFERENCES

[1] N. Weste and D. Harris, CMOS VLSI Design, 4th ed., Boston, MA:

Addison Wesley, 2011.
[2] H. Ling, “High-speed binary adder,” IBM J. Research and Dev., vol. 25,

no. 3, May 1981, pp. 156-166.
[3] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix VLSI

Ling adders,” IEEE Trans. Computers, vol. 54, no. 2, Feb. 2005, pp.
225-231.

[4] A Lakshmanan and M. Othman, “High-speed hybrid parallel-prefix
carry-select adder using Ling’s algorithm,” Intl. Conf. Semiconductor
Electronics, 2006, pp. 598-602.

[5] Y. Zhu, J. Liu, H. Zhu, and C.K. Cheng, “Timing-power optimization
for mixed-radix Ling adders,” Asia/South Pacific Design Automation
Conf., 2008, pp. 131-137.

[6] R. Jackson and S. Talwar, “High speed binary addition,” Proc. Asilomar
Conf. Signals, Systems, and Computers, Nov. 2004, pp. 1350-1353.

[7] N. Burgess, “Implementation of recursive Ling adders in CMOS VLSI,”
Proc. Asilomar Conf. Signals, Systems, and Computers, 2009.

[8] R. Jackson, personal communication, 5 July 2010.
[9] E. Mahurin, personal communication, 25 October 2010.
[10] J. Sklansky, “Conditional-sum addition logic,” IRE Trans. Electronic

Computers, vol. EC-9, Jun. 1960, pp. 226-231.
[11] R. Ladner and M. Fischer, “Parallel prefix computation,” J. ACM, vol.

27, no. 4, Oct. 1980, pp. 831-838.
[12] S. Naffziger, “A subnanosecond 0.5 μm 64b adder design,” Proc. IEEE

Intl. Solid-State Circuits Conf., 1996, pp. 362-363.
[13] S. Naffziger, “High speed addition using Ling’s equations and dynamic

CMOS logic,” US Patent 5,719,803, 1998.
[14] R. Zimmermann and W. Fichtner, “Low-power logic styles: CMOS

versus pass-transistor logic,” IEEE J. Solid-State Circuits, vol. 32, no. 7,
July 1997, pp. 1079-1090.

[15] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast
CMOS Circuits, San Francisco, CA: Morgan Kaufmann, 1999.

APPENDIX: PROOF OF D RECURSION

To prove EQ (35), expand both sides in terms of G and P and then combine

terms and simplify:

()()()

1
: : 1 : :

1
: : 1 :

: : 1 : 1 : 1: 1:

: :

p i k p
i j i i p i k i p j

i k p
i k i i p i p j

i k i i p i i p i p k k j k j

i j i j

D D R Q

G D Q

G G P P G P

G P

− − +
− + −

− − +
− + −

− + − + − − −

⎡ ⎤= +⎣ ⎦
= +

= + + +

= +

Fig. 4: 32-bit Jackson 2-3-3-2 adder using modified Sklansky tree

Fig. 5: Optimized 32-bit Jackson 2-3-3-2 adder

Fig. 6: Cell designs for optimized Jackson adder

