
Implicit kernels for
solid modeling

Matt Keeter matt.j.keeter@gmail.com
2018–01–19 mattkeeter.com

A Brief* History of CAD
*and probably inaccurate

Drafting tables

Computer-aided drafting

AutoCAD 2.18 (1985)

AutoCAD 2.18 (1985)

Into the 3rd Dimension

“While all drafting is 2D, and almost all

users will spend all their time with
AutoCAD working in 2D mode, 3D is
important more from a marketing
perception standpoint than a technical
one.”

John Walker, 1983

The path of least resistance

Boundary representations
Natural extension from 2D
Easy to render
Fragile representation
Geometric operations are hard!

Solid Modeling

“I have seen solids modeling, and it is the

future. For years the skeptics have

criticized solids as impractical, compute

intensive, and inflexible. ‘You can't cut

chips with solids,’ they'd say, or ‘sure

they're fun, but what can you do with

the model when you're done’?”

Eric Lyons, 1986

How would you make...

Menger Sponges

Family of gear pairs

Möbius strip

Mandelbrot Vase

Fundamentals of
functional representations

Functional representations

f : R3 → R

f(x, y, z) → Distance

Distance < 0: inside

Distance = 0: boundary

Distance > 0: outside

f(x, y, z) = x2 + y2 + z2 - r2

f(x, y, z) = x2 + y2 + z2 - r2

Upsides & downsides

➕ CSG (union / intersection / difference)
becomes trivial

➕ Unusual transforms become possible
➖ Rendering is harder

(but computers are fast,
 and it parallelizes well)

➖ Features are implicit
➖ Hard to interface with existing b-rep

ecosystem (meshes, NURBS, etc.)

Previous work

Hyperfun (SIGGRAPH 1999)

hyperfun.org

Kokopelli (2012)

github.com/mkeeter/kokopelli

“ImplicitCAD is a project dedicated to using the
power of math and computer science to get stupid
design problems out of the way of the 3D printing
revolution.”

ImplicitCad (2012)

implicitcad.org

Symvol (2012)

uformia.com

Antimony (2013)

github.com/mkeeter/antimony

Ao
(2016)

github.com/mkeeter/ao-guile-repl

libfive + Studio (2018)

libfive.com

Implicit kernel design

Representation vs.
Evaluation

Shape representation

● Lightweight manipulation of math trees
● De-duplication of clauses
● Arithmetic identities + constant folding
● Balancing of commutative operations

Deduplication

Arithmetic identities

square square

Tree balancing

max

max

max

a

b

c d

max

max max

a b c d

Representing a clause
 /* This is where tree data is actually stored */
 struct Tree_ {
 /*
 * Destructor erases this Tree
 * from the global Cache
 */
 ~Tree_();

 const Opcode::Opcode op;
 const uint8_t flags;
 const unsigned rank;

 /* Only populated for constants */
 const float value;

 /* Only populated for operations */
 const std::shared_ptr<Tree_> lhs;
 const std::shared_ptr<Tree_> rhs;
 };

Representing a clause
/* Lightweight, passable-by-value handle */
class Tree {
 /* Overload arithmetic here! */

 /* Here's the actual Tree data */
 std::shared_ptr<Tree_> ptr;
};

 /* This is where tree data is actually stored */
 struct Tree_ {
 /*
 * Destructor erases this Tree
 * from the global Cache
 */
 ~Tree_();

 const Opcode::Opcode op;
 const uint8_t flags;
 const unsigned rank;

 /* Only populated for constants */
 const float value;

 /* Only populated for operations */
 const std::shared_ptr<Tree_> lhs;
 const std::shared_ptr<Tree_> rhs;
 };

Representing a clause
/* Lightweight, passable-by-value handle */
class Tree {
 /* Overload arithmetic here! */

 /* Here's the actual Tree data */
 std::shared_ptr<Tree_> ptr;
};

class Cache {
 /* Functions to handle identities here! */

 typedef std::tuple<Opcode::Opcode,
 const Tree_*, /* lhs */
 const Tree_* /* rhs */ > Key;
 std::map<Key, std::weak_ptr<Tree::Tree_>> ops;
 std::map<float, std::weak_ptr<Tree::Tree_>> constants;
};

 /* This is where tree data is actually stored */
 struct Tree_ {
 /*
 * Destructor erases this Tree
 * from the global Cache
 */
 ~Tree_();

 const Opcode::Opcode op;
 const uint8_t flags;
 const unsigned rank;

 /* Only populated for constants */
 const float value;

 /* Only populated for operations */
 const std::shared_ptr<Tree_> lhs;
 const std::shared_ptr<Tree_> rhs;
 };

Representation vs.
Evaluation

General form of algorithms

● If at minimum size, perform operations on voxel
● Otherwise, evaluate interval

○ If filled or empty, return early

● Subdivide and recurse
● After recursion is done, collapse branches if possible

Flat tapes are faster than chasing pointers!

square square

square square + – – – maxopcode

0 1 4 6 6 8 7lhs

 5 2 3 9 rhs

4 5 6 7 8 9 10 out

Tape

Memory

0 1 2 3 4 5 6 7 8 9 10index

X Y 1 0.5 outvalue

Flat tapes are faster than chasing pointers!

square square

square square + – – – maxopcode

0 1 4 6 6 8 7lhs

 5 2 3 9 rhs

4 5 6 7 8 9 10 out

Tape

Memory

0 1 2 3 4 5 6 7 8 9 10index

X Y 1 0.5 outvalue

Flat tapes are faster than chasing pointers!

square square

square square + – – – maxopcode

0 1 4 6 6 8 7lhs

 5 2 3 9 rhs

4 5 6 7 8 9 10 out

Tape

Memory

0 1 2 3 4 5 6 7 8 9 10index

X Y 1 0.5 X2 outvalue

Flat tapes are faster than chasing pointers!

square square

square square + – – – maxopcode

0 1 4 6 6 8 7lhs

 5 2 3 9 rhs

4 5 6 7 8 9 10 out

Tape

Memory

0 1 2 3 4 5 6 7 8 9 10index

X Y 1 0.5 X2 outvalue

Flat tapes are faster than chasing pointers!

square square

square square + – – – maxopcode

0 1 4 6 6 8 7lhs

 5 2 3 9 rhs

4 5 6 7 8 9 10 out

Tape

Memory

0 1 2 3 4 5 6 7 8 9 10index

X Y 1 0.5 X2 Y2 outvalue

Floating-point values

Value types

f(1, 0, 0) = 0

f(1, 0, 0) = 0

f({...}, {...}, {...}) = {...}

Floating-point values

Arrays of floats

(optimization for speed)

Value types

Value types

Floating-point values

Arrays of floats

(optimization for speed)

Interval ranges

f(1, 0, 0) = 0

f({...}, {...}, {...}) = {...}

f([0, 1], [1, 2], [0, 0]) = [0, 4]

Value types

Floating-point values

Arrays of floats

(optimization for speed)

Interval ranges

Derivatives

(automatic differentiation)

f(1, 0, 0) = 0

f({...}, {...}, {...}) = {...}

f([0, 1], [1, 2], [0, 0]) = [0, 4]

(df/dx)(1, 0, 0) = 2
(df/dy)(1, 0, 0) = 0
(df/dz)(1, 0, 0) = 0

Tree pruning with intervals

square square

Tree pruning with intervals

square square

[1,2] [-1,0]

Tree pruning with intervals

square square square square

[1,2] [-1,0]

square square

square square + – – – maxopcode

0 1 4 6 6 8 7lhs

 5 2 3 9 rhs

4 5 6 7 8 9 10 out

Tree pruning with intervals

Outputs

Voxel output: heightmaps

Brightness = z-height
Useful for 2.5D machining

Voxel output: shaded

Normals are based on derivatives
(df/dx, df/dy, df/dz)

Normals are used to position vertices
on sharp edges and corners.

B-rep output: meshes

Curtain rail brackets
Paul Meyer

Real things!

Creepy Crawly Cutter
Sam Calisch

Rotary encoder
Matt Keeter

Unsolved problems

● GPU acceleration
● Feature-based design
● Interacting with meshes
● Constraint systems

