
Massively Parallel Rendering of Complex Closed-Form Implicit Surfaces

MATTHEW J. KEETER, Independent researcher

Fig. 1. An assortment of implicit surfaces rendered using our technique. Left: an extruded text string, rotated and rendered as a heightmap. Center: a bear head
sculpted using smooth blending operations, with normals found by automatic differentiation. Right: a complex architectural model rendered with screen-space
ambient occlusion and perspective. All models are rendered directly from their mathematical representations, without triangulation or raytracing.

Wepresent a newmethod for directly rendering complex closed-form implicit
surfaces onmodern GPUs, taking advantage of their massive parallelism. Our
model representation is unambiguously solid, can be sampled at arbitrary
resolution, and supports both constructive solid geometry (CSG) and more
unusual modeling operations (e.g. smooth blending of shapes). The rendering
strategy scales to large-scale models with thousands of arithmetic operations
in their underlying mathematical expressions. Our method only requires
C0 continuity, allowing for warping and blending operations which break
Lipshitz continuity.

To render a model, its underlying expression is evaluated in a shallow
hierarchy of spatial regions, using a high branching factor for efficient
parallelization. Interval arithmetic is used to both skip empty regions and
construct reduced versions of the expression. The latter is the optimization
that makes our algorithm practical: in one benchmark, expression complexity
decreases by two orders of magnitude between the original and reduced
expressions. Similar algorithms exist in the literature, but tend to be deeply
recursive with heterogeneous workloads in each branch, which makes them
GPU-unfriendly; our evaluation and expression reduction both run efficiently
as massively parallel algorithms, entirely on the GPU.

The resulting system renders complex implicit surfaces in high resolution
and at interactive speeds. We examine how performance scales with comput-
ing power, presenting performance results on hardware ranging from older
laptops to modern data-center GPUs, and showing significant improvements
at each stage.

CCS Concepts: • Computing methodologies → Rasterization; Volu-
metric models.

Additional Key Words and Phrases: implicit surface, signed distance field,
freps, octrees, rasterization, gpu, cuda

Author’s address: Matthew J. Keeter, Independent researcher, matt.j.keeter@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART141 $15.00
https://doi.org/10.1145/3386569.3392429

ACM Reference Format:
Matthew J. Keeter. 2020. Massively Parallel Rendering of Complex Closed-
Form Implicit Surfaces. ACM Trans. Graph. 39, 4, Article 141 (July 2020),
10 pages. https://doi.org/10.1145/3386569.3392429

1 INTRODUCTION
Implicit surfaces and functional representations are a powerful way
to represent solid models [Bloomenthal and Wyvill 1997; Gomes
et al. 2009]. Compared to boundary representations (e.g. triangle
meshes or NURBS surfaces), they offer unambiguous inside-outside
checking, easy constructive solid geometry (CSG) operations, and
arbitrary resolution. In recent years, functional representations (f-
reps) have been used as the kernel of both commercial [Courter
2019] and open-source [Keeter 2019] CAD packages. They are a
fundamental building block in the demoscene community [Burger
et al. 2002; Quilez 2008], used as a representation for generative art
[Moen 2019], and even as the underlying technology for a recent
PlayStation 4 game [Evans 2015].

Unlike boundary representations, implicit surfaces cannot easily
be rendered in their native forms. This paper presents a newmethod
for rendering the family of implicit surfaces represented by arbitrary
closed-form arithmetic expressions, i.e., representing a sphere as

f (x ,y,z) < 0 where f (x ,y,z) =
√
x2 + y2 + z2 − 1

This representation is particularly flexible and can be treated as
an “assembly language for shapes" which is targeted by higher-
level tools. The space of higher-level tools spans the gamut from
advanced solid modeling packages [Allen 2019] to user-friendly
content generation tools [Keeter 2015].

Our rendering strategy runs in both 2D and 3D, making efficient
use of modern GPU hardware and APIs. Unlike previous work, it
scales to complex expressions, maintaining interactive framerates
while rendering models built from hundreds or thousands of arith-
metic operations. It requires no continuity higher than C0, which
allows for extremely flexible modeling and unusual spatial transfor-
mations. Finally, it scales well with GPU power; as GPU performance

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392429
https://doi.org/10.1145/3386569.3392429

141:2 • Keeter

continues to increase, this rendering method will become increas-
ingly approachable.

1.1 Overview
A 3D shape is defined by a closed-form expression of three argu-
ments, e.g. f (x ,y,z). A specific point (x ,y,z) is considered to be
inside the model when f (x ,y,z) < 0, and outside the model when
f (x ,y,z) > 0. This expression is converted into a linear tape of
operations which can be executed by an interpreter running in a
GPU thread.
The region of interest is divided into a set of tiles of a fixed size,

e.g. 642 pixels or 643 voxels. Each tile is evaluated by a single GPU
thread using interval arithmetic [Moore 1966], where the input
intervals are the spatial region occupied by the tile. This evaluation
checks whether the tile is inside the surface, outside the surface, or
ambiguous. Inside tiles are marked, and outside tiles are ignored.
For each ambiguous tile, we construct a shortened tape containing
only parts of the expression which are active in that tile’s region.
Each ambiguous tile is split into subtiles with a high branching

factor. Using the shortened tapes from the previous step, each subtile
is again evaluated using interval arithmetic, using the same logic
as above. The process of evaluating, building shortened tapes, and
subdividing is repeated twice in 2D (642 and 82 pixels) and three
times in 3D (643, 163, 43 voxels); these sizes are chosen so that each
subdivision has an even multiple of 32 children, which corresponds
to GPU warp size and prevents thread divergence.
After the final round of interval evaluation, threads evaluate

individual pixels or voxels in the remaining ambiguous subtiles
using the last set of per-subtile shortened tapes. A visualization of
subdivision levels is shown in Figure 2.

64x64 filled tile

8x8 filled tile

8x8 empty tile

8x8 ambiguous tile

First pass Second pass

Per-pixel evaluation

Fig. 2. Levels of subdivision in 2D rendering. The first pass (top left) renders
64 × 64 pixel tiles using interval arithmetic. Ambiguous tiles are subdivided
into 8 × 8 pixel subtiles and checked with interval arithmetic again (top
right). Subtiles which remained ambiguous are then evaluated pixel by pixel
to produce the final image (bottom left).

1.2 Related work
Implicit surfaces, functional representations, and distance fields date
back to the 1960s, and have been the subjects of extensive research
in the past decades [Bloomenthal and Wyvill 1990; Gomes et al.
2009; Jones et al. 2006; Pasko et al. 1995].

This work builds most directly on Duff [1992], which describes a
robust algorithm for rendering CSGmodels using interval arithmetic
and recursion. The algorithm is not GPU-friendly, as it uses deep re-
cursion into an octree and leads to heterogeneous workloads on each
branch. Our work presents an adaptation of this algorithm which is
efficiently parallelizable; in addition, we expand the model represen-
tation from CSG to pure arithmetic expressions, which increases its
descriptive power. Dyllong and Grimm [2007] use a similar strategy
of storing reduced shape representations in an octree, reducing the
representation at each level of subdivision. Their representation is
at the level of CSG primitives, rather than arithmetic expressions,
and does not extend to GPU-based rendering.
Our work is also inspired by more recent research on GPU-

accelerated rendering of vector graphics. Though our underlying
representation is very different, we borrow the core strategy of Ne-
hab and Hoppe [2008], which is to divide space into tiles and build
a per-tile command list to execute on the GPU. Other work in this
genre includes Ganacim et al. [2014] and Li et al. [2016]; we first
learned of these papers from Levien [2019].

There is significant literature on converting implicit surfaces into
meshes for visualization [Ho et al. 2005; Ju et al. 2002; Lorensen and
Cline 1987; Schaefer et al. 2007]. Having implemented many of these
algorithms, we’ve found it extremely difficult to make them robust.
Detecting and placing vertices on sharp features is easy to getmostly
right, and very challenging to solve in the general case, particularly
if the resulting models must be manifold and not self-intersecting
[Bhattacharya et al. 2015]. Detecting thin features requires a high
sampling resolution; an alternative strategy is proposed in Manson
and Schaefer [2010] but their algorithm leads to crinkly edges when
the underlying fields are curved. The challenges of robustly meshing
an arbitrary implicit surface motivate this work on direct rendering,
which provides a compelling alternative.

Adaptively sampled distance fields are an alternative representa-
tion for volumetric datawith a host of related research [de Figueiredo
et al. 2001; Frisken et al. 2000]. ASDFs have been applied to sculptural
modeling [Perry and Frisken 2001] and simulation of NC milling
[Sullivan et al. 2012]. Bastos and Celes Filho [2008] describes an
algorithm for GPU-accelerated rendering of ASDFs, but the ASDFs
are generated from triangle meshes in an offline preprocessing step.
More broadly, ASDFs are a fundamentally different representation:
they’re closer to voxel data, in that they’re sampled at a particular
resolution. Our model representation is more complex, but also en-
codes more information, and is not fixed to a particular sampling
resolution.
Much of the existing literature on rendering implicit surfaces

focuses on raytracing; sphere tracing [Hart 1995] is a common tech-
nique. Seyb et al. [2019] extends sphere tracing to compensate for
non-linear deformations of signed distance fields (SDFs), but does
not otherwise overlap with our functional representation. Knoll
et al. [2009] describes a GPU-native algorithm for raytracing im-
plicit surfaces using interval and affine arithmetic. This work limits
itself to relatively short (< 100 operation) arithmetic expressions,
and as such, does not explore strategies for reducing the evaluation
workload by disabling inactive parts of the expression. Ganacim
et al. [2011] builds on this work with adaptive beam sizes, while

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

Massively Parallel Rendering of Complex Closed-Form Implicit Surfaces • 141:3

Fryazinov et al. [2010] improves this raytracing strategy with re-
vised affine arithmetic, but neither discusses reducing the model’s
representation; Ritter [2016] shows a 2D version of Fryazinov’s
algorithm running in WebGL.

2 GRAPH, TAPE, AND INTERPRETER
Rather than compiling a model-specific shader program / kernel,
we design a general-purpose interpreter and an encoding format for
the arithmetic expression that defines a shape. This is less efficient
than executing a model-specific program, but our core optimization
is to reduce the size of the expression (entirely on the GPU) at
each recursion level and region; it would be infeasible to recompile
shaders for tens of thousands of specialized programs per frame.

Our reference implementation supports algebraic (+, -, *, /, sqrt),
transcendental (sin, cos, asin, acos, atan, exp, log), and piecewise
(abs, min, max) functions. The interpreter architecture is not limited
to this list; other functions that support interval evaluation and
partial differentiation could also be implemented.

The input arithmetic expression can be seen as a directed acyclic
graph (DAG). For example, Figure 3 shows the DAG for the annulus

max
(
0.5 −

√
x2 + y2,

√
x2 + y2 − 1

)
< 0 (1)

Note that constructive solid geometry (CSG) operations are imple-
mented with min (union) and max (intersection) operations [Pasko
et al. 1995]. Our convention is to treat values < 0 as inside the shape;
this is not a universal choice, e.g. Ricci [1973] uses values < 1 as
inside, but this has no major implications.

SQUARE Xlhs

SQUARE Ylhs

ADD
lhs

rhsSQRT

SUB rhs

0.5flhs

SUB
lhs

1.0f
rhs

MAX
lhs

rhs

Fig. 3. Directed acyclic graph (DAG) of function 1. The abbreviations lhs and
rhs refer to “left-hand side" and “right-hand side", i.e., the two arguments
to a binary operation.

The raw math expression is comparable to an assembly language
for solid modeling: it is the underlying truth of what’s being evalu-
ated, but humans would prefer higher-level representations. Prior
to this work, we developed an open-source library and collection
of shapes and transforms which can be composed to generate com-
plex models. Details are outside the scope of this paper, but the
library is documented and published online [Keeter 2019]. Our li-
brary automatically builds DAGs from mathematical expressions,
storing intermediate expressions as pointers to nodes in a hash ta-
ble indexed by [opcode, lhs, rhs] or [constant value]. This
ensures that expressions with the same equation point to the same
object, achieving common subexpression elimination.
In a preprocessing step, the input DAG is converted into a flat

array of data in GPU memory. This tape contains an array of clauses,
which each encode an operation (e.g. +, −, ∗, /, stored as an integer
opcode), its arguments, and where to write its result.

This instruction tape will be interpreted by various GPU kernels,
running in parallel across many threads. Each thread, when evaluat-
ing a tape, has exclusive access to a block of memory. Clause argu-
ments and output locations are indexes into that memory, referred
to as slots. Treating the evaluator as a primitive virtual machine,
slots are equivalent to machine registers.
The graph is converted into a tape through a simple topological

sort [Kahn 1962]. Deciding where to store intermediate results is
more complex, and is equivalent to the problem of register allocation
[Chaitin et al. 1981]. There is existing literature on simultaneous
re-ordering and register allocation (e.g. [Rawat et al. 2018]), but
that was deemed outside the scope of this work. Instead, we use a
simple greedy algorithm: the live range of each output in the tape
is calculated, and its slot is made available for reuse outside of that
range. If an argument is the last use of a slot, that slot is made
available before assigning the output of the clause; this means that
a single clause may read and write the same slot.
A tape for Formula 1 is shown in Table 1. Notice that the tape

uses only two slots, even though the graph has nine clauses; this
shows slot re-use in action, which is critical when scaling to large
expressions.

Table 1. Instruction tape for the graph in Fig. 3

opcode lhs rhs out
X – – slot 0
Y – – slot 1

SQUARE slot 0 – slot 0
SQUARE slot 1 – slot 1
ADD slot 0 slot 1 slot 1
SQRT slot 1 – slot 1
SUB slot 1 1.0f slot 0
SUB 0.5f slot 1 slot 1
MAX slot 0 slot 1 slot 1

In Figure 4, we show text rendered in a hand-made f-rep font,
using a monologue from ‘The Tempest’ by Shakespeare. This is a
large model (6056 clauses) and serves as a useful stress test. The
model is built by taking the union of many individual characters,
themselves unions and intersections of primitives shapes (e.g. cir-
cles and rectangles). The resulting union is a black box; tracking
meta-data (e.g. bounding boxes of each character) through arbitrary
equation transformations is challenging, and could be a direction
for future research.
Table 2 shows the number of slots required for this model, as

well as the models in Figure 1. The clause-to-slots ratio varies be-
tween models, but is significantly higher (i.e., better) for the 2D text
benchmark. We hypothesize that this is because each character is
an independent CSG primitive, which makes it easier to re-use slots.

Generating the initial tape is the only step in our algorithm that
is executed on the CPU. In addition, these steps are only run when
the model changes; panning and zooming are handled through a
separate transformation described in Section 4. On a recent desktop
PC, generating the tape and sending it to the GPU took 7 ms for
our text benchmark, while all other examples took 1-2 ms. This is

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

141:4 • Keeter

Fig. 4. Textual benchmark rendered at 20482 pixels, using a hand-made
f-rep font. The expression has 6056 clauses, of which 2354 are min or max
operations.

Table 2. Required slots for various models. A higher ratio implies more
efficient slot allocation. The first three models are shown in Fig. 1; the 2D
text benchmark is Fig. 4.

Model Clauses Slots Ratio
"Hello, world" 328 26 12.6

Bear head sculpt 541 22 24.6
Architectural model 961 75 12.8
2D text benchmark 6056 84 72.1

acceptable for interactive editing of designs, though for very large
models, it could be a target for future optimization.

2.1 Interpreter overhead
To examine the overhead of our interpreter, we modified our im-
plementation to skip the interval arithmetic, tape shortening, and
spatial subdivision; instead, it simply evaluates pixel-by-pixel, us-
ing the interpreter and encoded tape. We compare this simplified,
brute-force interpreter against a kernel which directly evaluates
the shape shown in Figure 4; the latter was built by pasting the
mathematical expression into a CUDA C function and compiling it
with nvcc [Nickolls et al. 2008]. As motivation for not compiling
kernels while rendering, note that this offline compilation took 3.45
seconds.
The results are shown in Figure 5, which also includes our com-

plete algorithm. The frame times for the brute-force interpreter and
compiled expression are relatively linear with total pixels. Fitting a
straight line to each, we see that the brute-force interpreter has a
slope of roughly 58 milliseconds per megapixel, while the compiled
expression is approximately 3 ms/MP, implying a 19× overhead in
executing the interpreter.

This would be prohibitive, were it not for the interpreter allowing
for algorithmic optimizations. The same graph shows our complete
algorithm outperforming the compiled expression kernel at around
15362 pixels and remaining below 8 ms/frame even at 40962, with a
negligible slope.
With this as motivation, we’ll move on to explaining the other

core pieces of our algorithm.

0 5 10 15
Total pixels (M)

0

50

100

150

200

250

Fr
am

e
ti
m
e
(m

s)

10242 20482 30742 40962

Brute force (interpreted)

Compiled expression
Our method (interpreted)

Fig. 5. Performance of brute-force interpreter, compiled expression kernel,
and our complete algorithm, rendering the benchmark model from Fig. 4.
Measured on an NVIDIA GTX 1080 Ti GPU, which was a 2017 flagship
gaming model.

3 INTERVAL EVALUATION AND TAPE PRUNING
Interval arithmetic [Moore 1966; Moore et al. 2009; Tucker 2011] is
a strategy for tracking the bounds of a computation. It is often used
to track calculation errors, but also has applications in computer
graphics, including CAD, rendering, and raytracing [Duff 1992;
Knoll et al. 2009; Snyder 1992a,b].

In our case, we use axis-aligned spatial regions as input intervals,
i.e., evaluating on intervals X = [xmin,xmax], Y = [ymin,ymax],
Z = [zmin,zmax]. The output of f (X ,Y ,Z) is an interval which is
guaranteed to contain any value that could be found by evaluating
the function at a single point (x ,y,z) within the spatial region. As
such, the output indicates whether the spatial region is completely
inside or outside the surface:
• Upper bound of the output interval < 0→ Inside
• Lower bound of the output interval > 0→ Outside
• Otherwise→ Ambiguous

Ambiguous regions either contain the shapes boundary or are a
false positive (due to interval arithmetic’s conservative behavior).

In addition, interval arithmetic allows us to detect which clauses
in the tape are inactive (and may therefore be ignored within the re-
gion), producing a shorter version of the tape. This core optimization
is detailed in Section 3.2.

To perform interval arithmetic on the GPU, we implemented an
interval arithmetic library based on Melquiond et al. [2006], using
GPU floating-point intrinsics [NVIDIA 2019] to control rounding
modes. Though rounded intrinsics are required for mathematical
correctness [Duff 1992; Mitchell 1990], they may not be necessary
in practice: modifying our implementation to use normal operations
showed the same performance and identical output. This is reas-
suring, as not all GPU programming environment include rounded
intrinsics [Apple 2019]. Domain errors are handled per Melquiond
et al. [2006]: partially valid inputs return an output for the valid

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

Massively Parallel Rendering of Complex Closed-Form Implicit Surfaces • 141:5

sub-interval, while wholly invalid inputs return NaN, which is prop-
agated and treated as ambiguous.

3.1 Evaluation
Pseudo-code for interval evaluation is shown in Alg. 1. It is a sim-
ple interpreter loop, applying mathematical operations based on
clause opcodes, with one complication: at each min or max clause,
we examine the input intervals to see if either the left or right-hand
argument is unambiguously selected. If that is the case, then we
record the choice as CHOICE_LHS or CHOICE_RHS; otherwise, we
record CHOICE_BOTH. This data is used later when shortening the
tape.

Algorithm 1: Evaluate a tape, recording which branch is taken
at every min and max node
choices← an empty stack
foreach clause in tape do

lhs← getValue(clause.lhs)
rhs← getValue(clause.rhs)
switch clause.opcode do

case OP_MIN
if lhs.upper < rhs.lower then

choices.push(CHOICE_LHS)
else if rhs.upper < lhs.lower then

choices.push(CHOICE_RHS)
else

choices.push(CHOICE_BOTH)
slots[clause.out]← min(lhs, rhs)

case OP_MAX
Similar logic to push a choice slots[clause.out]
← max(lhs, rhs)

case OP_ADD
slots[clause.out]← lhs + rhs

case OP_SUB
...and so on for other opcodes

clause← the last clause in the tape
return (slots[clause.out], choices)

This pseudo-code is simplified to present the core algorithm. For
example, the getValue(...) function checks whether a clause reads
from a slot or immediate and returns the appropriate value. In
addition, the pseudo-code does not handle unary opcodes, making
the simplifying assumption that every opcode has two arguments.

3.2 Tape pruning
The process of constructing a shortened tape is shown in Alg. 2.
This pass walks through the clauses in reverse, tracking which slots
are active. Initially, only the output slot of the final clause (which
is the output of the calculation) is marked as active. Each clause
unconditionally marks its arguments as active, with two exceptions:
min and max. Clauses with these opcodes choose whether arguments
are active by popping choices from the stack constructed in the
forward evaluation pass (Alg. 1).

To provide an intuition for this pass, remember that min and max
act as CSG operations: union and intersection, respectively. From

this perspective, the tape pruning algorithm is checking which
CSG primitives are active within a particular spatial region, and
creating a reduced tape that only contains those primitives. Unlike
in CSGmodeling, the algorithm is operating at the level of individual
arithmetic clauses, since that is our underlying representation.

Algorithm 2: Use the choice data from Alg. 1 to construct a
shorter tape which only contains active clauses
output← an empty tape
active← an array of all false
active[final output slot]← true
foreach clause in tape.reversed() do

if clause.opcode ∈ [OP_MIN, OP_MAX] then
choice← choices.pop()

else
choice← CHOICE_BOTH

if active[clause.out] then
active[clause.out]← false
if choice == CHOICE_LHS then

active[clause.lhs]← true
clause.rhs← clause.lhs

else if choice == CHOICE_RHS then
active[clause.rhs]← true
clause.lhs← clause.rhs

else
active[clause.lhs]← true
active[clause.rhs]← true

output.push_back(clause)
return output

This algorithm dramatically reduces the number of active clauses,
though precise improvements depend on the number of CSG opera-
tions in a tape. Figure 6 shows our text benchmark with 642 tiles and
82 subtiles colored according to how many clauses remain active in
their tapes. We see a 17× reduction in average tape length for tiles
and a 216× reduction for subtiles.

0
100
200
300
400
500
600

Ta
pe

le
ng

th

Fig. 6. Tape length in active 64× 64 tiles (left) and 8× 8 subtiles (right) when
rendering the image shown in Figure 4 at 1024 × 1024 pixels. The original
tape is 6056 clauses in length. Tiles have an average tape length of 356± 125
(mean ± standard deviation); subtiles have an average tape length of 28± 13.
White space represents regions that have been proven inside or outside (and
are therefore skipped).

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

141:6 • Keeter

3.3 Data structures
The algorithms above use abstract data structures which do not nec-
essarily map to a GPU’s architecture. Details of our implementation
are given below:
• Each clause is an 8-byte value. It contains an opcode (1 byte),
the output slot (1 byte), and either two input slots (each 1 byte)
or one input slot (1 byte) and an immediate floating-point
constant (4 bytes). The opcode encodes both the mathematical
operation and whether to use the immediate constant.
• The storage slots are per-thread arrays of 128 values. For
simplicity, this is hard-coded, but could be dynamically sized
with the addition of load/store opcodes.
• The choices stack is also implemented as a fixed-size, per-
thread array for simplicity. Positionwithin the stack is tracked
by a separate index value. Each choice only requires two bits
to encode, so up to 4096 choices are packed into an array of
256 uint32_t integers.
• The output tape is an unrolled linked list [Shao et al. 1994],
with 64 clauses per list node. We allocate a large scratch
buffer (1 GB or larger), then individual GPU threads claim
64-clause chunks by atomically incrementing a single integer.
This allows for tapes of arbitrary length while preserving
cache-friendly access patterns.

4 RENDERING PROCEDURE
With these building blocks of interpreter, interval evaluation, and
tape pruning, we can now present the full 2D rendering procedure,
which was illustrated earlier in Fig. 2. The procedure evaluates and
produces an n × n grid of pixels, with a fixed viewport spanning ±1
on both axes. To allow for interactive panning and zooming, we pre-
multiply x andy pixel coordinates with a 2x2 transformation matrix;
X and Y opcodes in the tape return these transformed coordinates,
which effectively applies the transform to the entire shape.

Rendering happens in three passes:
• Interval evaluation on 64 × 64 pixel tiles
• Interval evaluation on 8 × 8 subtiles
(64 per active tile)
• Per-pixel evaluation on 8 × 8 subtiles
(64 pixels per active subtile)

Each pass after the first uses shortened tapes from the previous pass;
this is the optimization that makes the algorithm efficient. Using
64× subdivision ensures that exactly two warps are mapped to each
subdivided tile or subtile. This prevents thread divergence, because
every thread in the warp is evaluating the same shortened tape.

This procedure is formalized in Alg. 3. Note that each of the stages
(i.e., the for..do in parallel loops) is executed in parallel by many
threads on the GPU.

4.1 Data structures
Lists in Alg. 3 are implemented as arrays in GPU RAM, allocated
to contain the maximum possible number of items. For example,
before the first pass, we allocate enough space in the activeTiles list
for each tile (10242/642 = 256 items for a 1024 × 1024 2D image).
When multiple threads can write to the same list, they atomically
increment a global integer to uniquely “claim" an index in the list.

Algorithm 3: Rendering procedure (2D). The subroutines
evalInterval and pruneTape are shown in Algs. 1 and 2 respec-
tively; evalPixel is identical to evalInterval, but performs floating-
point (rather than interval) evaluation
activeTiles← an empty list
shortenedTapes← an empty map from regions to shortened
tapes
tape← our initial input tape
image← a blank image (all 0) of our target size
Split the input region into a set of 64 × 64 pixel tiles
for tile do in parallel

result← evalInterval (tile, tape)
if result.upper < 0 then

image.fill(tile.region)
else if result.lower < 0 then

activeTiles.push(tile)
shortenedTapes[tile.region]← pruneTape (tile, tape)

activeSubtiles← an empty list
for tile in activeTiles do in parallel

shortenedTape← shortenedTapes[tile.region]
Subdivide the tile into 64 subtiles (each 8 × 8 pixels)
for subtile do in parallel

result← evalInterval (subtile, shortenedTape)
if result.upper < 0 then

image.fill(subtile.region)
else if result.lower < 0 then

activeSubtiles.push(subtile)
shortenedTapes[subtile.region]←

pruneTape (subtile, shortenedTape)

for subtile in activeSubtiles do in parallel
shortenedTape← shortenedTapes[subtile.region]
Subdivide the subtile into 64 pixels
for pixel do in parallel

result← evalPixel (pixel, shortenedTape)
if result.upper < 0 then

image[pixel] = 1
.

The shortenedTapes map is hierarchical, with one level for tiles
and one for subtiles. Each level is an array of items which store both
the index for a shortened tape chunk (as described in Section 3.3)
and an optional index into the following level (populated only if the
tile is active).

The first level of the map contains one item per tile, indexed based
on that tile’s position in the spatial region. Indexing into the second
level is more complex, because we only want to allocate space for
subtiles that are within active tiles. Note that each active tile can be
assigned a unique value i between 0 and nactive. The second level
of the map contains 64 × nactive items, and the index for subtile j of
active tile i is i × 64 + j, where 0 ≤ j < 64.
For precise implementation details, please refer to our open-

source reference implementation, which is linked at the beginning
of Section 5.

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

Massively Parallel Rendering of Complex Closed-Form Implicit Surfaces • 141:7

4.2 Implementation of 3D rendering
In 3D, our algorithm produces both a heightmap and a set of surface
normals, both as 2D images at the target resolution. Figure 7 shows
sample output images.

Fig. 7. Heightmap and normal images, rendering an architectural model

The render region is an n × n × n voxel cube spanning ±1 on all
three axes, with voxels in this region mapping directly to pixels in
the final 2D images (which are each n × n). Coordinates within the
voxel space are screen-aligned and orthographic: each pixel in the
output images represent the “highest" (closest to the screen) voxel
in its screen-aligned ray.
As in the 2D case, we use a transformation matrix to move the

camera without modifying the model. Each voxel’s original coor-
dinates (−1 ≤ (x ,y,z) ≤ 1, linearly spaced) are transformed with a
4 × 4 matrix. This transformation uses OpenGL-style homogeneous
coordinates (i.e., each transformed coordinate is divided by w) to
allow for rendering with perspective. Transformed coordinates are
calculated and saved before tape evaluation; when opcodes in the
tape ask for X, Y, or Z, they receive these transformed coordinates,
transforming the entire shape.
The rendering procedure for the 3D heightmap is broadly the

same as Alg. 3, with tiles and subtiles representing 3D volumes
rather than 2D areas. Rendering uses four passes to preserve 64×
subdivision at each level:
• Interval evaluation on 64 × 64 × 64 tiles
• Interval evaluation on 16 × 16 × 16 subtiles
(64 per active tile)
• Interval evaluation on 4 × 4 × 4 microtiles
(64 per active subtile)
• Per-voxel evaluation on 4 × 4 × 4 microtiles
(64 voxels per active microtile)

The result of these four passes is a 2D heightmap of the model.
Values in the heightmap are written using atomic max operations,
as tiles may not be evaluated in a fully Z-sorted order. As a further
optimization, each pass checks whether the target tile or voxel is
completely occluded, returning early if that is the case. The atomic
operations are not a performance bottleneck; the vast majority of
effort goes into walking the tapes, which is limited by local memory
bandwidth (due to reading and writing of slots).

After the heightmap is generated, a final pass calculates surface
normals of visible voxels and writes those normals into a separate
2D image. Normals are found by calculating the partial derivatives
∂ f /∂x , ∂ f /∂y, ∂ f /∂z near the surface of the model [Hart et al.
2002]. To calculate these derivatives, we walk through the tape in
the same manner as Alg. 1, performing forward-mode automatic
differentiation [Rall 1981] for each opcode rather than interval evalu-
ation. For speed, we use the shortened tape from the smallest region
containing the target pixel, found in the hierarchical map described
in Section 4.1. Normals are evaluated as 32-bit floating-point values,
then discretized to 8 bits for drawing.
Finally, it’s possible to use the heightmap and normal images as

inputs to a standard deferred rendering pipeline. For example, the
architectural model in Figure 1 is drawn with screen space ambient
occlusion [Bavoil and Sainz 2008], applied as a post-processing step.

5 PERFORMANCE EVALUATION
Performance was characterized across three machines, to examine
a range of computing power:
• Macbook Pro (2013) with an NVIDIA GeForce GT 750M GPU
• Workstation built for VR/ML with an NVIDIA GTX 1080 Ti;
this was a 2017 flagship desktop GPU
• AWS p3.2xlarge instance with a NVIDIA Tesla V100 GPU;
this is the most powerful single GPU available on Amazon
Web Services.

We implemented our algorithm in C++ using CUDA for GPU
acceleration. This reference implementation is available online at
https://github.com/mkeeter/mpr. The repository includes our im-
plementation, benchmarks, models, and instructions to reproduce
our results on AWS.
Models used in benchmarking are detailed in Table 3. The text

and architectural models are large hard-surface CSG models, which
are well-suited to our tape pruning algorithm. The bear sculpture
is a benchmark which is less perfectly matched to our algorithm:
it includes relatively few CSG clauses, and makes extensive use of
smooth blending operations. These blends are both computationally
expensive (using exp and log) and cannot be culled like min and max
clauses. The gear model shown in Figure 8 is primarily a CSG model,
but uses a mathematically exact representation for the involute
curve of each tooth, which requires computing acos and atan.

Table 3. Parameters of models used in benchmarking. “Clauses" is the num-
ber of clauses in the tape; “CSG" is the number of min and max operations.
The first two models are shown in Fig. 1, the 2D text benchmark in Fig. 4,
and the gears in Fig. 8.

Model Clauses CSG Dimensions
Architectural model 961 465 3D
Bear head sculpt 541 27 3D
Text benchmark 6056 2354 2D

Gears 1735 374 Both

5.1 2D benchmarks
Table 4 shows 2D benchmarking results. The GT 750M reaches 30
frames per second for all sizes below 4096 × 4096, while both of the

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

https://github.com/mkeeter/mpr

141:8 • Keeter

(a) 20482 pixels (b) 20483 voxels

Fig. 8. Gear benchmark rendered in 2D and 3D. The involute curve of each
tooth is mathematically exact, calculated using trigonometric functions.

more powerful GPUs render up to 4096×4096 without dipping below
60 FPS. For the larger GPUs, performance is only loosely correlated
with image size, which indicates that we’re far from saturating the
GPU.

Table 4. 2D benchmarking results

Text benchmark
Frame time (ms)

Size GeForce GT 750M GTX 1080 Ti Tesla V100
2562 17.5 8.3 5.2
5122 14.8 6.8 4.2
10242 16.5 6.5 3.9
20482 20.7 6.6 3.9
30722 27.1 6.9 3.9
40962 35.9 7.4 4.1

Gears (2D)
Frame time (ms)

Size GeForce GT 750M GTX 1080 Ti Tesla V100
2562 9.2 4.0 2.8
5122 9.3 3.7 2.5
10242 12.1 3.4 2.2
20482 17.3 3.4 2.2
30722 23.4 3.7 2.3
40962 30.6 4.0 2.4

To examine the detailed behavior of the algorithm, we visualize a
heatmap of work in Figure 9. From this visualization, we see that
the gear model is less efficient at pruning the tape than the text
benchmark. This matches our intuition: the text benchmark has
many CSG operations, which are easy to simplify. Our algorithm’s
advantage over naive evaluation is also apparent in these heatmaps:
each pixel evaluates the full tape much less than once, with work
amortized over many pixels in a region.

5.2 3D benchmarks
For consistency, all 3D models are rendered with a perspective pro-
jection, which matches how they are shown in figures throughout
this document. Benchmarking only includes rendering the heightmap
and normal images, without any post-processing (e.g. SSAO).

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.002
0.004
0.006
0.008
0.010
0.012
0.014

Fig. 9. Work per pixel, rendering 1024 × 1024 images. Scores are normalized
by tape size: a score of 1 indicates that the tape has been fully walked once.
In addition, work is amortized across pixels during interval evaluation.

Results are shown in Table 5. As expected, the CSG-heavy archi-
tecture scene performs the best, followed by the acos/atan-heavy
gear, with the smoothly blended bear sculpture performing the
worst. On the most powerful GPU, both the architecture and gears
model exceed 40 FPS at 10243 voxels (producing a 1024×1024 image);
the bear lags behind at 11 FPS.
These results are extremely promising in terms of GPU scal-

ing: the Tesla V100 is around 2× faster than the GTX 1080 Ti and
15 − 25× faster than the GT 750M. This implies that as GPU power
and parallelism continues to improve, our algorithm will be able to
scale with the additional resources.

Table 5. 3D benchmarking results

Architectural model
Frame time (ms)

Size GeForce GT 750M GTX 1080 Ti Tesla V100
2563 34.3 5.5 3.2
5123 73.9 9.9 5.3
10243 189.9 22.6 12.2
15363 331.9 39.3 20.8
20483 510.7 60.6 31.9

Gears (3D)
Frame time (ms)

Size GeForce GT 750M GTX 1080 Ti Tesla V100
2563 65.0 9.4 6.2
5123 154.5 16.6 9.2
10243 426.2 40.3 23.1
15363 930.3 72.0 39.5
20483 — 115.4 62.0

Bear head sculpt
Frame time (ms)

Size GeForce GT 750M GTX 1080 Ti Tesla V100
2563 111.3 11.3 5.2
5123 503.6 41.1 20.3
10243 2352.1 191.0 88.3
15363 — 504.2 228.3
20483 — 1053.2 437.3

A heatmap of effort is shown in Figure 10, using the same amor-
tized and normalized scale as Fig. 9. In the 3D case, each pixel in the

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

Massively Parallel Rendering of Complex Closed-Form Implicit Surfaces • 141:9

0.05

0.10

0.15

0.20

0.25

0.30

0.2

0.4

0.6

0.8

1.0

2

4

6

8

10

12

14

16

Fig. 10. Normalized amortized work per pixel, rendering 10243 voxels

heatmap sums work for every voxel in its stack. As expected, the
models with more CSG operations perform dramatically less work
per pixel. Interestingly, we see behavior similar to that of marching
spheres: extra work is done at the edges of the model, where inter-
val evaluation can’t skip entire regions and must evaluate down
to smaller regions or individual voxels. Finally, the visualizations
hint at inefficiencies in the shapes themselves: the “echoes" below
the architectural model suggest that adding a Z clipping plane to
the model would improve its rendering time, while the glow on the
bear’s right side suggests that the many smooth blends are leading
to less useful interval evaluation results.

6 CONCLUSIONS AND FUTURE WORK
Wehave presented a newmethod for rendering complex closed-form
implicit surfaces on the GPU, without triangulation or conventional
raytracing. This work has immediate applications for fast visualiza-
tions in solid modeling and computer-aided design, but could also
be used for simulation or as a lightweight, robust kernel for user-
generated content. Our algorithm scales from laptop to desktop to
server graphics cards, reaping speed improvements at each step; we
anticipate it being increasingly useful as GPUs continue to increase
in power and parallelism.

Though we used it to render a 2D image from a particular camera
angle, this algorithm can also perform a full voxelization (in the 3D
case) by turning off depth culling. This suggests potential synergies
with other GPU-first algorithms for rendering voxel data, e.g. Sparse
Voxel Octrees [Laine and Karras 2010] and GVDB [Hoetzlein 2016].
One particularly interesting direction is to use our algorithm for
fast voxelization at a lower resolution (e.g. 5123), then render at full
screen resolution using conventional raytracing on the voxel data.
Performance improvements to our core algorithm are another

direction for future research. The interpreter loop is one high-value
target for further optimization. The ideal would be to dynamically
generate executable code on the GPU, eliminating interpreter over-
head altogether; unfortunately, there is no support for on-device JIT
compilation in modern GPU APIs. A second optimization could be
exploring reduced affine arithmetic [Fryazinov et al. 2010] to more
tightly bound intervals. Additionally, our implementation of depth
culling is relatively naive; scheduling work on the GPU to avoid
evaluating occluded voxels could improve performance.

Finally, our algorithm is limited to rendering pure functional rep-
resentations; a powerful representation, but not one in common use.
In previous work [Keeter 2019], we sidestepped this limitation with
black-box “oracles", which are an escape hatch for interoperability
with other representations: anything that cannot be expressed as a
pure math expression can be boxed into an oracle, which exposes
point, interval, and derivative evaluation. However, this work was
limited to meshing on the CPU; integrating this kind of API with
our GPU rendering pipeline would allow for interoperability with
other representations, including meshes and raw voxel data.

ACKNOWLEDGMENTS
I’m incredibly grateful to everyone who read drafts and gave feed-
back as I worked on this project: Jonathan Bachrach, Blake Courter,
Neil Gershenfeld, Raph Levien, Brian Merchant, Doug Moen, and
Amira Abdel Rahman. Special thanks to Martin Galese, who both
provided feedback and loaned me time on his VR/ML workstation
for benchmarking.
The architectural model in Figure 1 is based on a design by Jen-

nifer Keeter, for whom I am very grateful. The bear head is based
on a design by Hazel Fraticelli and Anthony Taconi; thanks for
providing a particularly challenging benchmark! The gear model
uses a clever closed-form expression for an involute curve derived
by Peter Fedak.

I’d like to thank the anonymous reviewers for their feedback and
insights. Finally, thanks to my colleagues at Formlabs for encourag-
ing my independent research, and the folks at nTopology for their
support of the libfive kernel.

REFERENCES
George Allen. 2019. nTopology Modeling Technology. https://ntopology.com/wp-

content/uploads/2019/12/nTop-Modeling-Tech-WhitePaper-v3.pdf.
Apple. 2019. Metal Shading Language Specification (version 2.2). https://developer.

apple.com/metal/Metal-Shading-Language-Specification.pdf.
Thiago Bastos and Waldemar Celes Filho. 2008. GPU-accelerated Adaptively Sam-

pled Distance Fields. 2008 IEEE International Conference on Shape Modeling and
Applications (2008), 171–178.

Louis Bavoil and Miguel Sainz. 2008. Screen Space Ambient Occlusion - Nvidia.
(Nov. 2008). https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/
ScreenSpaceAO/doc/ScreenSpaceAO.pdf

Arindam Bhattacharya, Ross Vasko, and Rephael Wenger. 2015. Shrec: Sharp recon-
struction of isosurface. Technical Report. The Ohio State University. Report TR:
OSU-CISRC-11/15-TR22.

Jules Bloomenthal and Brian Wyvill. 1990. Interactive techniques for implicit modeling.
SIGGRAPH Comput. Graph. 24, 2 (Feb. 1990), 109–116. https://doi.org/10.1145/91394.
91427

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

https://ntopology.com/wp-content/uploads/2019/12/nTop-Modeling-Tech-WhitePaper-v3.pdf
https://ntopology.com/wp-content/uploads/2019/12/nTop-Modeling-Tech-WhitePaper-v3.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf
https://doi.org/10.1145/91394.91427
https://doi.org/10.1145/91394.91427

141:10 • Keeter

Jules Bloomenthal and Brian Wyvill. 1997. Introduction to Implicit Surfaces. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Boris Burger, Ondrej Paulovic, and Milos Hasan. 2002. Realtime Visualization Methods
in the Demoscene. http://old.cescg.org/CESCG-2002/BBurger/index.html. Proceed-
ings of the Central European Seminar on Computer Graphics (April 2002), 205–218.

Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. 1981. Register Allocation via Coloring. Comput.
Lang. 6, 1 (Jan. 1981), 47–57. https://doi.org/10.1016/0096-0551(81)90048-5

Blake Courter. 2019. How implicits succeed where B-reps fail. https://ntopology.com/
blog/2019/03/28/how-implicits-succeed-where-b-reps-fail/.

L.H. de Figueiredo, L. Velho, and J.B. de Oliveira. 2001. Revisiting adaptively sampled
distance fields. In Computer Graphics and Image Processing, 2001 Proceedings of XIV
Brazilian Symposium on. 377–. https://doi.org/10.1109/SIBGRAPI.2001.963083

Tom Duff. 1992. Interval arithmetic recursive subdivision for implicit functions and
constructive solid geometry. In Proceedings of the 19th annual conference on Computer
graphics and interactive techniques (SIGGRAPH ’92). ACM, New York, NY, USA, 131–
138. https://doi.org/10.1145/133994.134027

Eva Dyllong and Cornelius Grimm. 2007. Verified Adaptive Octree Representations of
Constructive Solid Geometry Objects. 223–236.

Alex Evans. 2015. Learning from Failure: a Survey of Promising, Unconventional and
Mostly Abandoned Renderers for ’Dreams PS4‘, a Geometrically Dense, Painterly
UGC Game. http://media.lolrus.mediamolecule.com/AlexEvans_SIGGRAPH-2015.
pdf.

Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones. 2000. Adap-
tively sampled distance fields: a general representation of shape for computer
graphics. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques (SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 249–254. https://doi.org/10.1145/344779.344899

Oleg Fryazinov, Alexander Pasko, and Peter Comninos. 2010. Fast reliable interrogation
of procedurally defined implicit surfaces using extended revised affine arithmetic.
Computers & Graphics 34 (Dec. 2010), 708–718. https://doi.org/10.1016/j.cag.2010.
07.003

F. Ganacim, L. H. Figueiredo, and D. Nehab. 2011. Beam Casting Implicit Surfaces on
the GPU with Interval Arithmetic. In 2011 24th SIBGRAPI Conference on Graphics,
Patterns and Images. 72–77.

Francisco Ganacim, Rodolfo S. Lima, Luiz Henrique de Figueiredo, and Diego Nehab.
2014. Massively-Parallel Vector Graphics. ACM Trans. Graph. 33, 6, Article Article
229 (Nov. 2014), 14 pages. https://doi.org/10.1145/2661229.2661274

Abel J. P. Gomes, Joaquim Jorge Voiculescu, Brian Wyvill, and Callum Galbraith. 2009.
Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. Springer.

John Hart. 1995. Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing
of Implicit Surfaces. The Visual Computer 12 (June 1995). https://doi.org/10.1007/
s003710050084

John Hart, Ed Bachta, Wojciech Jarosz, and Terry Fleury. 2002. Using particles to sample
and control more complex implicit surfaces. Proceedings - SMI 2002: Shape Modeling
International 2002, 129 – 136. https://doi.org/10.1109/SMI.2002.1003537

Chien-chang Ho, Fu-che Wu, Bing-yu Chen, and Ming Ouhyoung. 2005. Cubical
marching squares: Adaptive feature preserving surface extraction from volume data.
Computer Graphics Forum 24 (2005), 2005.

Rama Karl Hoetzlein. 2016. GVDB: Raytracing Sparse Voxel Database Structures on
the GPU. In Proceedings of High Performance Graphics (HPG ’16). Eurographics
Association, Goslar Germany, Germany, 109–117. https://doi.org/10.2312/hpg.
20161197

Mark W. Jones, J. Andreas Baerentzen, and Milos Sramek. 2006. 3D Distance Fields:
A Survey of Techniques and Applications. IEEE Transactions on Visualization and
Computer Graphics 12, 4 (July 2006), 581–599. https://doi.org/10.1109/TVCG.2006.56

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual Contouring of
Hermite Data. In Proceedings of the 29th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’02). ACM, New York, NY, USA, 339–346.
https://doi.org/10.1145/566570.566586

A. B. Kahn. 1962. Topological Sorting of Large Networks. Commun. ACM 5, 11 (Nov.
1962), 558–562. https://doi.org/10.1145/368996.369025

Matthew Keeter. 2015. Antimony. https://mattkeeter.com/projects/antimony.
Matthew Keeter. 2019. libfive: Infrastructure for solid modeling. https://libfive.com.
Aaron Knoll, Younis Hijazi, Andrew Kensler, Mathias Schott, and Charles Hansen. 2009.

Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic.
Comput. Graph. Forum 28 (March 2009), 26–40. https://doi.org/10.1111/j.1467-
8659.2008.01189.x

Samuli Laine and Tero Karras. 2010. Efficient Sparse Voxel Octrees. In Proceedings of
the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D
’10). ACM, New York, NY, USA, 55–63. https://doi.org/10.1145/1730804.1730814

Raph Levien. 2019. 2D Graphics on Modern GPU. https://raphlinus.github.io/rust/
graphics/gpu/2019/05/08/modern-2d.html.

Rui Li, Qiming Hou, and Kun Zhou. 2016. Efficient GPU Path Rendering Using Scanline
Rasterization. ACM Transactions on Graphics 35, 6 (2016).

William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987),
163–169. https://doi.org/10.1145/37402.37422

Josiah Manson and Scott Schaefer. 2010. Isosurfaces Over Simplicial Partitions of
Multiresolution Grids. Comput. Graph. Forum 29 (May 2010), 377–385. https:
//doi.org/10.1111/j.1467-8659.2009.01607.x

Guillaume Melquiond, Sylvain Pion, and Hervé Brönnimann. 2006. Interval Arithmetic
Library. https://www.boost.org/doc/libs/1_71_0/libs/numeric/interval/doc/interval.
htm.

D. P. Mitchell. 1990. Robust Ray Intersection with Interval Arithmetic. In Proceedings
on Graphics Interface ’90. Canadian Information Processing Society, CAN, 68–74.

Doug Moen. 2019. curv: a language for making art using mathematics.
https://github.com/curv3d/curv.

Ramon E. Moore. 1966. Interval Analysis. Prentice-Hall.
Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. 2009. Introduction to Interval

Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.
9780898717716 arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9780898717716

Diego Nehab and Hugues Hoppe. 2008. Random-access Rendering of General Vector
Graphics. In ACM SIGGRAPH Asia 2008 Papers (SIGGRAPH Asia ’08). ACM, New
York, NY, USA, Article 135, 10 pages. https://doi.org/10.1145/1457515.1409088

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable Parallel
Programming with CUDA. Queue 6, 2 (March 2008), 40–53. https://doi.org/10.1145/
1365490.1365500

NVIDIA. 2019. CUDA Math API. https://docs.nvidia.com/cuda/pdf/CUDA_Math_API.
pdf.

Alexander Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir Savchenko. 1995. Func-
tion representation in geometric modeling: concepts, implementation and appli-
cations. The Visual Computer 11 (Aug. 1995), 429–446. https://doi.org/10.1007/
BF02464333

Ronald N. Perry and Sarah F. Frisken. 2001. Kizamu: a system for sculpting digital
characters. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 47–56. https:
//doi.org/10.1145/383259.383264

Inigo Quilez. 2008. 3D SDF functions. https://www.iquilezles.org/www/articles/
distfunctions/distfunctions.htm.

Louis B. Rall. 1981. Automatic Differentiation: Techniques and Applications. Lecture Notes
in Computer Science, Vol. 120. Springer. https://doi.org/10.1007/3-540-10861-0

Prashant Singh Rawat, Aravind Sukumaran-Rajam, Atanas Rountev, Fabrice Rastello,
Louis-Noël Pouchet, and P. Sadayappan. 2018. Associative Instruction Reordering
to Alleviate Register Pressure. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC ’18). IEEE Press,
Piscataway, NJ, USA, Article 46, 13 pages. https://doi.org/10.1109/SC.2018.00049

A. Ricci. 1973. A constructive geometry for computer graphics. Com-
put. J. 16, 2 (Jan. 1973), 157–160. https://doi.org/10.1093/comjnl/16.2.157
arXiv:http://oup.prod.sis.lan/comjnl/article-pdf/16/2/157/1060001/160157.pdf

Leonard Ritter. 2016. Affine Arithmetic Joint Range. https://www.shadertoy.com/view/
4sV3zm.

Scott Schaefer, Tao Ju, and Joe Warren. 2007. Manifold Dual Contouring. IEEE
Transactions on Visualization and Computer Graphics 13, 3 (May 2007), 610–619.
https://doi.org/10.1109/TVCG.2007.1012

Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz. 2019. Non-
linear Sphere Tracing for Rendering Deformed Signed Distance Fields. ACM Trans.
Graph. 38, 6, Article 229 (Nov. 2019), 12 pages. https://doi.org/10.1145/3355089.
3356502

Zhong Shao, John H. Reppy, and AndrewW. Appel. 1994. Unrolling Lists. In Proceedings
of the 1994 ACM Conference on LISP and Functional Programming (LFP ’94). ACM,
New York, NY, USA, 185–195. https://doi.org/10.1145/182409.182453

John M. Snyder. 1992a. Generative Modeling for Computer Graphics and CAD: Symbolic
Shape Design Using Interval Analysis. Academic Press Professional, Inc., USA.

John M. Snyder. 1992b. Interval Analysis for Computer Graphics. In Proceedings of the
19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’92). Association for Computing Machinery, New York, NY, USA, 121–130. https:
//doi.org/10.1145/133994.134024

Alan Sullivan, Huseyin Erdim, Ronald N. Perry, and Sarah F. Frisken. 2012. High
accuracy NC milling simulation using composite adaptively sampled distance fields.
Comput. Aided Des. 44, 6 (June 2012), 522–536. https://doi.org/10.1016/j.cad.2012.
02.002

Warwick Tucker. 2011. Validated Numerics: A Short Introduction to Rigorous Computa-
tions. Princeton University Press. http://www.jstor.org/stable/j.ctvcm4g18

ACM Trans. Graph., Vol. 39, No. 4, Article 141. Publication date: July 2020.

http://old.cescg.org/CESCG-2002/BBurger/index.html
https://doi.org/10.1016/0096-0551(81)90048-5
https://ntopology.com/blog/2019/03/28/how-implicits-succeed-where-b-reps-fail/
https://ntopology.com/blog/2019/03/28/how-implicits-succeed-where-b-reps-fail/
https://doi.org/10.1109/SIBGRAPI.2001.963083
https://doi.org/10.1145/133994.134027
http://media.lolrus.mediamolecule.com/AlexEvans_SIGGRAPH-2015.pdf
http://media.lolrus.mediamolecule.com/AlexEvans_SIGGRAPH-2015.pdf
https://doi.org/10.1145/344779.344899
https://doi.org/10.1016/j.cag.2010.07.003
https://doi.org/10.1016/j.cag.2010.07.003
https://doi.org/10.1145/2661229.2661274
https://doi.org/10.1007/s003710050084
https://doi.org/10.1007/s003710050084
https://doi.org/10.1109/SMI.2002.1003537
https://doi.org/10.2312/hpg.20161197
https://doi.org/10.2312/hpg.20161197
https://doi.org/10.1109/TVCG.2006.56
https://doi.org/10.1145/566570.566586
https://doi.org/10.1145/368996.369025
https://mattkeeter.com/projects/antimony
https://libfive.com
https://doi.org/10.1111/j.1467-8659.2008.01189.x
https://doi.org/10.1111/j.1467-8659.2008.01189.x
https://doi.org/10.1145/1730804.1730814
https://raphlinus.github.io/rust/graphics/gpu/2019/05/08/modern-2d.html
https://raphlinus.github.io/rust/graphics/gpu/2019/05/08/modern-2d.html
https://doi.org/10.1145/37402.37422
https://doi.org/10.1111/j.1467-8659.2009.01607.x
https://doi.org/10.1111/j.1467-8659.2009.01607.x
https://www.boost.org/doc/libs/1_71_0/libs/numeric/interval/doc/interval.htm
https://www.boost.org/doc/libs/1_71_0/libs/numeric/interval/doc/interval.htm
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898717716
https://doi.org/10.1145/1457515.1409088
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://docs.nvidia.com/cuda/pdf/CUDA_Math_API.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Math_API.pdf
https://doi.org/10.1007/BF02464333
https://doi.org/10.1007/BF02464333
https://doi.org/10.1145/383259.383264
https://doi.org/10.1145/383259.383264
https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://doi.org/10.1007/3-540-10861-0
https://doi.org/10.1109/SC.2018.00049
https://doi.org/10.1093/comjnl/16.2.157
http://arxiv.org/abs/http://oup.prod.sis.lan/comjnl/article-pdf/16/2/157/1060001/160157.pdf
https://www.shadertoy.com/view/4sV3zm
https://www.shadertoy.com/view/4sV3zm
https://doi.org/10.1109/TVCG.2007.1012
https://doi.org/10.1145/3355089.3356502
https://doi.org/10.1145/3355089.3356502
https://doi.org/10.1145/182409.182453
https://doi.org/10.1145/133994.134024
https://doi.org/10.1145/133994.134024
https://doi.org/10.1016/j.cad.2012.02.002
https://doi.org/10.1016/j.cad.2012.02.002
http://www.jstor.org/stable/j.ctvcm4g18

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Related work

	2 Graph, tape, and interpreter
	2.1 Interpreter overhead

	3 Interval evaluation and tape pruning
	3.1 Evaluation
	3.2 Tape pruning
	3.3 Data structures

	4 Rendering procedure
	4.1 Data structures
	4.2 Implementation of 3D rendering

	5 Performance evaluation
	5.1 2D benchmarks
	5.2 3D benchmarks

	6 Conclusions and Future Work
	Acknowledgments
	References

