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Abstract

Oracle Corporation has sponsored a group of students from the Harvey
Mudd College Clay-Wolkin Fellowship to develop a methodology by which
different digital multiplier designs can be fairly compared. The team devel-
oped scripts to generate a variety of different multiplier designs, including
array multipliers, Wallace tree multipliers, and 4:2 compressor tree mul-
tipliers. The team also evaluated several different tools that could opti-
mally size the gates in each multiplier design: the Stanford Circuit Opti-
mization Tool (SCOT), Large Scale Gate Sizer (LSGS), and Synopsis Design
Compiler (DC). The team used each of these tools to generate energy-delay
tradeoff curves for different multiplier designs, but was unable to come to
very many solid conclusions. In evaluating the optimization tools, the team
found significant limitations for SCOT and LSGS, and was unable to obtain
sufficiently accurate results using DC. In the end, the DC behavioral syn-
thesis for multiplication had a better energy-delay product than any of the
team’s designs.
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Chapter 1

Background

1.1 Project Overview

High-speed, low-power digital multipliers are important building blocks
both in general computing and in specialized applications such as digi-
tal signal processing and cryptography. There are many proposed multi-
plier designs in the literature, both novel and established [6]. Many of these
designs make claims regarding speed and power consumption, but these
claims often lack a standardized or fair basis for comparison, making it
difficult to compare the energy and delay characteristics of two arbitrary
designs in the literature. The goal of this project was to provide such a fair
basis for comparison by evaluating many possible designs in a large design
space. To perform such fair comparisons, the team employed three differ-
ent software tools to determine optimal gate sizing under a given energy
or delay constraint. Each tool could generate energy-delay (ED) trade-off
curves for different multiplier designs. Comparing these curves can pro-
vide insight into which designs exhibit favorable energy and delay charac-
teristics.

1.2 Multiplication Overview

Multipliers take in an m-bit multiplicand and a n-bit multiplier and multi-
ply them to produce an m + n-bit product. At the heart of many multiplier
designs is the generation and summation of partial products to compute
the final product. Each of these tasks can be performed many ways, and
the final summation is often performed in two stages. The partial product
reduction tree performs carry-save additions to sum the partial products
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into a pair of outputs. The carry-propagate adder sums the pair to compute
the final product. This algorithm is very much like traditional multiplica-
tion, and thus multipliers are represented with the partial products in a
trapezoidal set of rows so that all the partial products of equal weight form
vertical lines. Each partial product can be represented by a set of dots in a
dot diagram, with rows that can be generated independently and columns
containing equal valued partial products (see Figure 1.1).

Partial Products M
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x
0

x
15
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Figure 1.1: A multiplier dot diagram [6]

Multipliers are often discussed and represented with the bitslices (and
power and ground lines) running top to bottom, rather than left to right.
Fitting the circuit components onto a rectangular block that integrates with
standard datapaths requires that the trapezoid be compressed into a square
shape.

1.3 Carry Save Addition

Multipliers use full adders to reduce the number of bits to sum in each
column. Full adders take in three bits and output their sum as a two bit
number. The most significant bit of the sum is called the carry bit; this
bit is added to the next column of the multiplier. The least significant bit
is called the sum bit; this bit is added within the column from which the
bits originated, as it maintains the original weight. Because a full adder
takes in three bits, and outputs two bits, it is commonly referred to as a 3:2
carry save adder (CSA). When showing how columns of partial products
are added, designers often draw a single column of a dot diagram and then
draw CSAs as blocks with three inputs and two outputs. The carry output
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is shown to be feeding into the input of a subsequent CSA. Though this
is not strictly accurate, each carry that runs into the next column can be
considered to be replaced by a carry from the last column. Thus, this is
still a decent way to consider the number of bits to sum, and to sketch the
placement of the CSAs.

1.4 Design Space

Many sections of a multiplier may be designed independently of each other;
that is, the multiplier design space has many different, largely independent
dimensions. This implies a very large number of possible design combina-
tions. The team will not be able to test every possible combination of de-
sign choices due to the design time involved in generating the HDL code
for each multiplier. Therefore, the design space will be explored by branch-
ing out from a default design along a number of dimensions. This means
that the project won’t cover every possible design, but covers much of the
sensible design space. The following are brief summaries of each design
dimension that the team considered.

1.4.1 Functions

Multipliers can be designed to handle unsigned inputs, signed inputs, or
both options in a configurable manner. Early results showed minimal dif-
ference between signed and unsigned multipliers, so the team did not pur-
sue this comparison further. All multipliers described below are unsigned.

1.4.2 Booth Encoding

Most high-speed multipliers sum a set of partial products to compute the fi-
nal product. Booth encoding improves this method further by algebraically
manipulating these partial products so that fewer are needed. Radix-4 is a
commonly used Booth algorithm that generates only half the number of
partial products without introducing significant delay.

1.4.3 Carry Save Adder Style

There are many designs for the cells that perform carry save addition. De-
pending on the architecture, these designs can improve delay in the sum
bit at the expense of the carry bit or change the number of inputs and out-
puts. Another option is the use of pass transistors to reduce energy, area
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and delay. When using SCOT and LSGS, the team was able to perform
some comparisons of different types of CSAs; however, the nature of De-
sign Compiler prevented the team from varying this component of the de-
signs in a systematic manner.

1.4.4 Structure

Partial product addition can be improved by arranging the adders in tree
structures instead of a linear series because many of the partial products ar-
rive at the same time. This is an area of much research, and there are many
choices for how to design a tree. In general, there is a trade-off between
shorter wires due to regular layout and lower propagation delay. There-
fore, wire capacitance has a major effect on the results since it is the most
significant downside to complicated tree structures.

1.4.5 Size

Sizes between 8 × 8 multipliers and 64 × 64 multipliers were considered,
with different multiplier structures being more or less effective at different
sizes.

1.4.6 Final Adder

There are many possible designs for the final carry-propagate adder that
sums the two redundant-form outputs of the partial products reduction.
The simplest design, a ripple-carry adder, uses little hardware but adds sig-
nificantly to the delay. Tree-based designs using propagate-generate logic
can substantially improve both the delay and the E-D product of multipli-
ers.

1.5 Standard Configuration

Because of the number of dimensions in our design space, it seems overly
ambitious to expect to span the space. Instead, the team has selected a base
case from which the search can be extended along a range of dimensions
to see where particular improvements are attainable. The base case was
designed to be simple enough that modifications can be made with relative
ease, while realistic enough to serve as a valid basis for comparison. Thus,
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the base case is a 16 × 16 unsigned radix-4 array multiplier that uses uni-
formly sized XOR3-Majority adders to sum partial products and a Sklansky
tree adder to compute the final sum.





Chapter 2

Multiplier Designs

In this chapter, we present the preliminary set of multiplier designs to be
examined with the various optimization tools. Each of these designs is cre-
ated by a Perl generator script. Each script produces a Verilog module that
describes the multipliers using cells from a standard library and annotates
the Verilog with the positions of the cells.

2.1 Array Multiplier

An array multiplier uses a set of AND gates to compute partial products.
Each partial product bit is then fed into a full adder which sums the partial
product bit with the sum from the previous adder and a carry from the
less significant previous adder. Figure 2.1 shows how the sum and carry
propagate through an array multiplier. The structure serves to minimize
wire length, produces a regular structure that is easy to lay out, and uses a
relatively small area.

In layout out the array multiplier, a rectangular floorplan is desirable.
The floorplan is therefore squashed into a fairly regular rectangle. Various
extra pieces of hardware and slightly irregular logic make the edges of the
rectangle ragged, but the overall shape is highly regular, as seen in Figure
2.2. For more information about the process information relevant to this
and future layouts, see Section 4.2.

Figure 2.3 shows that the depth of the CSAs in an array multiplier is
N. Array multipliers see limited use at larger sizes due to their lack of
tree-based partial products reduction. In this study, they form of base case
against which other designs can be compared, and are simple enough to
vary other aspects of the design space with the assurance that the overall
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Figure 2.1: Schematic of an array multiplier [6]

design will not be significantly impacted.

2.2 Booth Encoding

Radix-4 Booth encoding increases the complexity of the partial product
generation to reduce the number of partial products by a factor of two.
Each row of partial products in a booth encoded multiplier represents mul-
tiplication by zero through one less than the radix of the multiplier. Thus, a
radix-4 multiplier uses a row of partial products to represent the multiplier
multiplied by two bits of the multiplicand and represents the multiplier
bits scaled by a factor of 0, 1, 2 or 3. Multiplying by 0 or 1 is trivial, and a
multiplication by two is an inexpensive shift operation. However, it is diffi-
cult to compute the product of a number multiplied by 3 (this is referred to
as a ”hard multiple”). Booth encoding can be modified to produce negative
partial products so that each row is instead multiplied by -2, -1, 0, 1, or 2,
and the next row is incremented appropriately to compensate for the nega-
tive multiples. This avoids the hard multiple by using the negative output
to let two stages represent a 3 as 4 − 1. With these modifications, radix-4
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Figure 2.2: Layout of a 16-bit array multiplier
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Figure 2.3: Summing of partial products in an array multiplier [6]
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modified Booth encoding reduces the number of partial products nearly by
half.

2.3 Partial Product Reduction Trees

2.3.1 Wallace Tree

The Wallace tree uses a branching arrangement of CSAs to reduce the set
of partial products [22]. This strategy reduces the logical depth, so the criti-
cal path grows as log3/2(N/2), rather than as N as for an array multiplier.
The difference in logic depth can be seen by comparing Figures 2.3 and 2.4.
Using a Wallace tree to sum partial products should theoretically increase

Pa
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s

Redundant
Output

Weste Harris 1081

Figure 2.4: Summing of partial products in a Wallace tree [6]

speed compared to an array multiplier, since the critical path of each col-
umn has fewer stages. However, the Wallace tree comes with its own set of
disadvantages. The tree has an irregular structure, which makes it difficult
to lay out efficiently and “squash” into a rectangular floorplan. Further-
more, the tree structure means that results from one block of logic may have
to travel a significant distance across the tree to where they are needed, re-
sulting in long wire lengths and performance reduction due to wire capac-
itance.

As with each design that the team has generated, the HDL for the Wal-
lace tree multipliers are created using Perl scripts. The initial state of the
script has a set of partial product rows that need to be summed. In con-
structing the tree, the script combines sets of three rows with a CSA. The
sum and outputs from this CSA are then added into the list of rows to be
summed in the next stage of tree reduction. The process repeats until there
are only two rows that remain to be summed; these rows are then buffered
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and passed into a final adder.
Layout of the Wallace tree is centered on the wordwise regularity: each

row is either a partial product generator or a CSA. The tree is organized
so that information always flows downwards, and wire length is some-
what optimized. The script places rows in such a way that a row is directly
underneath all of its prerequisites. For example, in the first level of tree
reduction, each CSA is placed under three rows of partial product genera-
tion. This approach to layout keeps the tree structure somewhat regular, as
seen in Figure 2.5. In that figure, red indicates level 1 of the Wallace tree,
green level 2, blue level 3, and purple level 4.

2.3.2 4:2 Compressor Tree

Taking advantage of a similar branching arrangement to the Wallace tree,
the 4:2 tree architecture is constructed from 4:2 compressors. Each com-
pressor receives four inputs and a carry in. It then reduces them to a carry
and sum output, as well as a fast carry out. This leads to a total of log2(

N
2 )

compressors, although each 4:2 compressor has larger delay than a CSA.
These compressors can be composed of two 3:2 CSA’s, but other designs
have been implemented to further optimize the critical path. The carry in
and carry out are designed such that the carry out is available after only one
XOR delay, while the carry in can be accepted as late as one XOR delay into
the two XOR delay computation. Therefore, while 4:2 compressors actu-
ally take in five inputs and output three bits, they can be treated as having
four inputs and two outputs. Ultimately, the advantage is that 4:2 trees are
also much more regular than Wallace trees, reducing wire capacitance and
simplifying layout.

Due to time constraints, the 4:2 tree was not completed to the point of a
realistic layout.

2.3.3 The Three-Dimensional Method

The three-dimensional method is another partial products reduction tech-
nique. Rather than employing a straightforward tree structure, however,
it uses a third dimension, signal arrival times, to construct trees that are
optimized to minimize delay.

The three-dimensional method takes advantage of the asymmetric gate
delay through an XOR-MAJ full adder. The sum bit is calculated by a chain
of two XOR2 gates (see Figure 2.6). Note that two inputs must pass through
two XOR2 gates to affect the output; for them, the full adder has a delay of
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Figure 2.5: 16-bit Wallace tree layout
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two XOR delays, the unit in which delay is typically measured for the three-
dimensional method. The third input passes through only the final XOR2,
and so the sum bit has a delay of only a single XOR gate delay for this input.
This means that the third input can arrive later than the first two by up to
one XOR delay without affecting the arrival time of the sum bit. The carry
bit is symmetric over the inputs; to simplify the three-dimensional analysis,
the arrival time of the carry bit is approximated as one XOR delay from the
arrival of the last input. It is also necessary to employ half adders for the
three-dimensional method. These half adders consist of a single XOR2 gate
and an AND gate; therefore, the sum bit has one XOR delay, and the carry
bit has approximately half of an XOR delay.

X Y Z

MAJ

C S

Figure 2.6: An XOR-MAJ CSA [6]

As with other PPRTs, each column of partial products must be reduced
to two bits of equal weight, which are then passed to final adder to be
summed into the final product. The PPRT that uses three-dimensional
method is constructed based on the expected arrival time, in XOR delays,
of each intermediate carry signal passed into each column of bits to be
summed. As the tree is constructed, the expected arrival times of each carry
signal are computed, and passed to the next column.

The algorithm for constructing the reduction tree for each column can
be broken into several distinct steps. First, each partial product for the
column is accounted for, and assigned an initial delay of zero. Any carry
signals from the previous column are also considered; their arrival times
are whatever was calculated in the previous column. Note that CSAs com-
press three input bits into just one output of the same weight, so the total
number of equally weighted bits maintains the same parity regardless of
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Figure 2.7: The three-dimensional method [6]

the number of CSAs that are employed in the column. Since we wish to
reduce the number of bits in the column to two, this cannot be achieved
with only final adders if we begin with an odd number of bits. Thus, if the
starting number of bits is odd, we begin by passing the two bits with the
earliest arrival time to a half adder, which results in an overall even number
of bits of the same weight.

The remainder of the tree is constructed using what is referred to as the
three-greedy algorithm. This method takes the three partial products or
intermediate carry nets with the least delay, and uses them as inputs to the
next full adder, arranged so that the signal with the latest arrival time is
sent to the fast input of the CSA. The carry output of this full adder is sent
to the next column (with the arrival time noted so that the reduction tree of
the following column can be constructed), with its delay set to one greater
than the maximum of the delays of the input signals. The sum is kept in
the current column. Its delay is either one greater than the delay of the fast
input, or two greater than the delay of the latest slow input, whichever is
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greater. In this way, three bits of equal weight are reduced to one bit in
the same column. This process is repeated as necessary until the column
has been reduced to two bits of equal weight, which are sent to the final
adder. See Figure 2.7 for a graphical representation of the reduction tree for
a single column of a 16-bit multiplier.

Although the three-greedy method is not optimal, it is within one XOR
delay of optimal for a wide range of multiplier sizes [20]. A TDM multiplier
implemented with this the three-greedy method is still faster, in terms of
XOR delays, than either 4:2 trees or Wallace trees (see Table 2.1). However,
its layout is complicated by its lack of regularity. The added capacitive
loading of long wires may significantly increase the overall delay, and the
irregular gate structure makes layout difficult.

The layout for the TDM tree was optimized for regularity, at the ex-
pense of wire lengths. All of the partial products are generated above, and
reduced in a set of adders. The adder rows have been fitted to a rectangu-
lar floorplan, so a data line travels downwards and to the right as it passes
through the multiplier. The layout can be seen in Figure 2.8.

Number of Partial Products Wallace Tree 4:2 Tree TDM
8 8 5 5
9 8 6 6
16 12 8 8
24 14 10 10
32 16 11 11
64 20 15 14

Table 2.1: Comparison of multiplier speeds [6]
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Figure 2.8: Layout of a 16-bit TDM multiplier



Chapter 3

Adder Designs

This chapter discusses final adder architectures and their energy-delay trade-
offs. Although a final adder’s energy contribution is relatively insignificant
compared to the rest of a multiplier, additional delay on the critical path is
undesired. Consequently, fast adders can significantly improve multiplier
energy-delay products.

We used several fast adders designed by visiting team member Daniel
Lee and based off of designs by Sklansky and Zimmerman.

3.1 Sklansky Adder

Figure 3.1: PG Diagram of Sklansky Adder [26]

Sklansky adders reduce the number of logic levels in an N-bit adder
to log2(N) stages by increasing fanout. This is a substantial improvement
over a simple ripple-carry adder, the number of logic levels of which in-
creases linearly with the number of intputs. Figure 3.1 is a propagate-



18 Adder Designs

generate diagram of a 16-bit Sklansky adder with dots representing grey
and black cells. As a parallel prefix adder, Sklansky uses black cells for
group generate and propagate logic and grey cells at the end of each col-
umn for generate logic. Assuming uniform arrival times from the multi-
plier partial product reduction tree, a Sklansky adder is optimized for de-
lay.

A Sklansky adder’s sparse structure allow for a vertical fold to compact
layout into a smaller rectangle. Figure 3.4 is a visualization of a 32 bit folded
Sklansky adder. The light grey colored hardware on the top and bottom of
the layout are convert the signals into and out of propagate-generate form.

3.2 Zimmerman Adder

A Zimmerman adder combines the benefits of a ripple carry adder’s lim-
ited hardware with a Sklansky adder’s low delay [26]. Zimmerman adders
optimize for non-uniform arrival times with the strategy of making the crit-
ical path fast and by then reducing hardware wherever possible.

Figure 3.2 illustrates a Zimmerman adder composed of a ripple carry
adder for the first bits which arrive early, and then transitions into a Sklan-
sky adder for the late arriving higher bits.

Figure 3.2: PG diagram of a simple Zimmerman adder [26]

More accurately representing a multiplier’s final adder, Figure 3.3, opti-
mizes for ”trapezoidal” arrival times. A simple ripple carry adds the early
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arriving most and least significant bits and a Sklansky passes bits along the
critical path.

Figure 3.3: PG diagram of a three section Zimmerman adder [26]

A Zimmerman adder layout reflects the architecture’s hardware reduc-
ing benefits, as seen in Figure 3.5. The team generated adders with this
algorithm by estimating the arrival times of each bit to the final adder, an
estimate arrived at simply by counting the number of stages in the partial
product reduction.
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Figure 3.4: Layout of 32-bit Sklansky Adder
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Figure 3.5: Layout of 32-bit Zimmerman Adder for 16-bit TDM





Chapter 4

Optimization

This chapter describes the tools and techniques that are being used to au-
tomatically optimize the multipliers. The team employed three different
tools to evaluate multiplier performance via sizing optimization: the Stan-
ford Circuit Optimization Tool (SCOT), Large-Scale Gate Sizer (LSGS), and
Synopsis Design Compiler (DC).

4.1 Motivation

One of the focuses of this project is to ensure that the results are believable
and applicable to industry. The use of optimization tools helps to ensure
this goal in two ways. First, it ensures that human design is only needed
at the architectural level, while the gate-level or transistor-level sizing is
automated. This means that the results are less dependent on the team’s
skill in designing circuits, and that all of the designs are treated fairly by
the same algorithm. Secondly, these tools simulate the circuit using real
process models, ensuring that our results are applicable to real chips using
recent technologies.

4.2 Process Information

SCOT uses a 90nm model from an ST Microelectronics process with a VDD
of 1.1 V and an FO4 delay of 27 ps. SCOT designs assumed a column pitch
of 80λ. All cells used in SCOT designs were hand-designed as part of a
custom standard library.
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LSGS and DC use a 130nm IBM process and an ARM standard cell li-
brary, with a VDD of 1.2 V and an FO4 delay of 55 ps. These designs assume
a column pitch of 60λ.

Wire capacitance was estimated as 0.2 fF/µ m for both processes.

4.3 SCOT

SCOT is a tool for optimizing transistor sizing to minimize either the en-
ergy or the delay of a circuit. It works by generating a generalized problem
from a circuit that is a purely mathematical description of the optimization
problem. This problem is then solved using the MOSEK optimization soft-
ware in terms of transistor sizing as well as any other desired variables,
such as VDD. SCOT can be used to generate E-D trade-offs by applying a
delay constraint and then minimizing energy to obtain a single E-D point.
This process is then iterated until an entire curve is defined from absolute
minimum delay to absolute minimum energy.

4.3.1 SCOT Flow

A Perl script called auto iter was created that takes in a Verilog file and
automatically generates an ED trade-off curve. It also has options to en-
able activity factors, wire capacitance, and uniform sizing. Activity factor
calculation is achieved using a ModelSim simulation dump and then back-
annotated into the SPICE deck along with the duty cycle. Once it is in the
SPICE deck, SCOT automatically uses the data in its calculations. Wire
capacitance is calculated using module positions described in the Verilog
file. Wire length is estimated for each net using a modified Prim algorithm
for rectilinear Steiner trees. These capacitances are then inserted into the
SPICE deck for each net. A schematic of the overall project flow is shown
in Figure 4.1.

4.3.2 Challenges

Unfortunately, the team found that SCOT could not scale up to multipliers
larger than 32 bits. Initially, it couldn’t even handle 32-bit multipliers. To
attempt to remedy this, options were added to auto iter in an effort to
decrease the number of free variables in the optimization problem.

The first method of speeding up SCOT was to implement uniform gate
sizing. This decreases the computation time involved in the optimization



SCOT 25

multTest auto_iter

Generate
Verilog

Test and
visualize

Verilog design

Convert
Verilog

to SPICE

Generate
models,

eliminate
brackets

Generate
and solve

problem file
(minimize D)

Generate
and solve

problem file
(minimize E)

Calculate
activity

factors, back
annotate

Modify file
for desired

delay
constraint

Solve GGP

Extract
results,

generate
Matlab plotter

Clean up
files, check

and visualize
results

ModelSim dump

iterate for n points

Plotdata.dat
Plotresults.m

Figure 4.1: Project flow with SCOT

problem by setting modules of the same hierarchy to have shared transistor
size variables. For example, if uniform sizing is enabled, SCOT would force
all NANDs in all CSAs to be sized similarly, although NANDs outside of
CSAs could be sized independently from those in the CSAs. This not only
improves the execution speed, but also realistically simulates how an actual
multiplier would be laid out with regularity.

Uniform sizing was able to decrease the problem size from thousands
of free variables down to tens of variables, but it wasn’t enough to get the
larger multipliers working. To further speed up SCOT, all transistors in a
cell were set as fixed ratios of a single variable. This required more design
to be done because these ratios had to be pre-set, but it made 32 bit mul-
tipliers possible in SCOT. With uniform sizing and fixed transistor ratios
together, only 6 variables need to be solved in any size multiplier.

Although we expected huge speed increases from these changes, we
only ended up getting moderate gains of doubling the speed at best. This is
likely due to the fact that SCOT still needs to generate a large model for the
entire multiplier and isn’t able to simplify the problem even when a single
variable is used in many equations. In addition, the effectiveness of the
optimizer is reduced by these changes, making the results more dubious
and farther from optimal. For these reasons, the team decided to switch to
LSGS in order to handle larger multipliers.



26 Optimization

4.4 LSGS

The Large-Scale Gate Sizer (also known as “LSGS” or simply “Gatesizer”)
is a tool designed specifically for the task at hand — optimizing medium-
to-large circuits. It is being developed at Sun Labs by Jo Ebergen. It works
by transforming the gate sizing problem into a convex approximation, which
can be solved using standard methods [7] very efficiently.

As opposed to SCOT’s exponential performance, LSGS is linear in the
number of gates in the circuit (and with a rather small constant). However,
after some time working with LSGS, we determined that it would not be
feasible for this project due to some modeling issues, which are discussed
in Section 4.4.2.

4.4.1 LSGS Flow

LSGS is divided into a number of components, some of which are shown
in Figure 4.2.
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Figure 4.2: Project flow with LSGS

We interact with LSGS through two in-house scripts, gs_gen and gs_run.
gs_run only exists to parse user commands and call gs_gen. gs_gen is re-
sponsible for taking the files provided (typically, Verilog for a multiplier)
and preparing them for LSGS.

The first stage is to convert the Verilog into a form that LSGS can un-
derstand. This requires flattening the input down to a single level and con-
verting our gates into those present in the ARM library, which is done by
v2gs2.

From this flattened file, activity factors and wire capacitances are gen-
erated as described in Section 4.3.1. An SDC file is also generated which
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provides the constraints for LSGS. In particular, it specifies the input and
output loads on the multiplier. The team is currently using x4 inverters for
both driving cells and output loads.

Ben Keller and Austin Lee later investigated using automatic routing
tools to extract more precise wire capacitance values for LSGS [9], and found
that the difference between estimated and extracted capacitance values did
not have a significant impact on delay.

Characterizing the library is a completely separate process, as indicated
in the diagram. It is handled by a script named lib2model, which parses
the Liberty file (particularly its rise/fall response curves) to generate the
simplified delay and energy information used by LSGS. It writes this out
both as Perl and Matlab files, since LSGS contains components written in
both languages.

Once all of the intermediate files have been generated, they are passed
to v2tau to create a Matlab data file for LSGS’s use. This is then passed to
either tradeoff or crawler, Matlab scripts. tradeoff generates an energy-
delay curve by taking designer-provided maximum- and minimum-delay
points, then sampling points in between and optimizing to meet the rele-
vant constraints. crawler takes a rough estimate minimum-energy point
and then hill-climbs to the minimum-delay point. In our project, we pri-
marily used crawler.

Once these MATLAB scripts are run, gs_run passes their output to an-
other script which assembles output graphs as shown in Figure 4.3.

4.4.2 LSGS Issues

LSGS, as a work-in-progress research tool, has a number of limitations
which eventually led the team to abandon it for this project. The most
severe of these is a flaw in its gate models. In this standard library, many
cells are implemented as a multi-stage design. It makes the choice to de-
crease drive delay in larger-sized cells by only increasing the output stage.
This causes upsized cells to have substantial intrinsic delay increases. Un-
fortunately, LSGS does not model this size-dependent intrinsic delay at all,
which leads to nontrivial modeling problems. This is illustrated in Fig-
ure 4.3, which displays the results of an LSGS run on an 8-bit ripple-carry
adder.

In this graph, the blue curve shows the output of LSGS’s internal (un-
snapped) modeling, and the black diamonds are the results of Primetime
simulations at particular snapped instantiations. The slope of the Prime-
time curve is actually the opposite of what LSGS expects it to be, due to
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Figure 4.3: LSGS results for ripple-carry adder
.

this unmodeled intrinsic delay increase. This problem is most evident with
chained compound gates (like full adders), and thus makes using LSGS
with multipliers challenging.

We also encountered a number of other bugs in LSGS. For example, it
does not characterize gates with very asymmetric rise/fall delays very well,
it can’t properly simulate gates which have multiple inputs being driven by
the same signal, and it has problems determining starting conditions.

4.5 DC

After the difficulties with LSGS, the team chose to investigate using Design
Compiler (DC) to process the designs. Design Compiler (DC) is an indus-
try standard tool by Synopsys. It performs synthesis of Verilog files using
a provided library of cells—in this case, the ARM library that we used for
LSGS tests. DC produces energy and delay information using Primetime
for timing information and its own internal model for energy calculations.
Though DC preserves logical function, it modifies the code in various ways
to optimize the performance of the circuit. For example, it is much more
adept at taking advantage of the asymmetric timing properties of the stan-
dard cells to optimize delay along a path.

The flow through DC is shown in Figure 4.4. The Verilog and con-
straints file are generated as before. Then, the Verilog is optimized with
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Figure 4.4: Project flow with Design Compiler

DC for a range of delay constraints. The resulting power and delay are vi-
sualized by a set of automatic scripts that parse, filter, and plot the data.
The graphs can be seen in Chapter 5 of the report. It should be noted that
this flow does not take into account our earlier layouts and does not cur-
rently include any wire capacitance estimation.

The team also attempted to combine DC and LSGS; that is, use LSGS to
by DC. Again, the graphs can been seen in Chapter 5 of this paper.

4.6 Visualization Tool

The team is using manually-laid-out Verilog to more easily account for wire
capacitance and other geometrically-dependent effects. The team has de-
veloped a visualization tool named cwviz to verify layouts and visually
compare different multiplier designs. This tool is designed to render Ver-
ilog with custom positioning tags to a SVG (Scalable Vector Graphics) file
and, when necessary, automatically convert to other formats. It is imple-
mented in Ruby and, wherever possible, is configurable without any cod-
ing knowledge. A sample visualized cell is displayed in Figure 4.5. The
visualizer currently has configuration files for displaying cell-type coloriza-
tion, no colorization, and images.

In the second semester, cwviz was extended to also visualize SCOT out-
put. It can both display absolute per-cell timing (which is good for finding
the slowest or fastest cells in the circuit), or “relative” timing, which makes
it easy to see the critical path. The tool also has support for doing some pre-
liminary layout checking for a circuit, including detecting cell overlap. An
8× 8 irregular TDM multiplier with relative timing is shown in Figure 4.6.
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Figure 4.5: 8-bit array multiplier visualized with cwviz
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Figure 4.6: 16-bit multiplier visualized with delays



Chapter 5

Results

In this chapter, we present a set of results in the form of energy-delay trade-
off curves. Using automated optimization tools (as described in Chapter 4),
we are able to build multipliers with various energy and delay character-
istics and create energy-delay tradeoff curves, which we show and explain
in this section.

5.1 Validity

For each optimization strategy, an effort was made to ensure that optimiza-
tions were producing useful data. Delay estimation was performed using
logical effort and counting XOR delays; power estimation was performed
by estimating total capacitance and average activity factors. At all stages,
we compared between different optimization methods and tools as sanity-
checking.

5.1.1 Validity of SCOT Results

Our validation for SCOT involved testing the critical path to check that the
delays met our estimations. Analysis of FO4 inverter chains matched pre-
vious characterizations. Multipliers demonstrated delays similar to those
predicted by counting XOR delays. As we sought to speed up the runs,
we further constrained the problem, despite penalties to the validity of the
results. For more information, see Section 4.3.2.
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5.1.2 Validity of LSGS Results

Because LSGS relies on gate level simulation, the optimization problem is
more heavily constrained than the one solved by SCOT. When comparing
LSGS results to those from SCOT, it is important to note that LSGS simu-
lations are performed a different process that is roughly half as fast as the
process used with SCOT. Verification of LSGS results involved testing in-
verter chains against predictions made with logical effort, as well as a num-
ber of simple cells (including NAND trees and a ripple carry adder). With
the exception of the ripple carry adder, LSGS modeled systems as expected.
Due to tool issues explained in Section 4.4.2, results from circuits including
chains of compound gates (such as a ripple-carry adder) are invalid; we are
thus not using LSGS results except in very well-controlled circumstances.

5.1.3 Validity of DC Results

Design compiler is a commercially available tool. We were not able to run
optimizations with wire capacitance, but the other tools showed that the ef-
fects of wire capacitance were not significant enough to prevent tree struc-
ture adders from outperforming array multipliers for large sizes. However,
the lack of wire capacitance estimation means that comparisons between
the tree-based multipliers are questionable.
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5.2 SCOT findings

The transistor-level optimization strategy employed by SCOT helped us
form some interesting conclusions. Transistor-level simulation let us ex-
plore how limiting the degrees of freedom in an optimization problem pe-
nalized the performance of the multiplier, as well as how wire capacitance
affected different TDM layouts.

5.2.1 Gate-Sizing Strategies
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Figure 5.1: Performance penalty for uniform sizing in a 16-bit TDM

While trying to reduce the time SCOT needed to optimize a multiplier,
we experimented with a number of strategies to simplify the optimization
problem posed to SCOT. One method we examined was to size similar
gates uniformly. Essentially, this would mean that every instance of a given
gate in the circuit (for example, every inverter) would be sized identically.
Figure 5.1 shows a test-case for a TDM multiplier. Note that this constraint
increased the delay by about 20%. This demonstrates that to produce valid
results with SCOT, we would need to use transistor-level sizing, which we
found to be impractical at sizes above 16 bits.
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5.2.2 TDM Layout Design
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Figure 5.2: Three different 16-bit TDM multiplier layouts

Because SCOT was aware of how layout affected multiplier speed, sev-
eral layout strategies for a TDM multiplier were tested in order to find a
layout which could best deliver the performance gains promised by the
TDM architecture. Figure 5.2(a) shows a TDM multiplier that achieves a
regular structure by separating the partial product generators from the tree
adders on the left side. Partial products and adders are generated on a
diagonal, but the diagonal has to jog left in order to reach the tree adder.
Figure 5.2(b) shows a multiplier in which buffers have been added before
these long wires in an attempt to speed the transmission of partial prod-
ucts. This should be useful in large multipliers and on long wires that may
have to travel a reasonably large vertical distance in addition to the hori-
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zontal distance. Figure 5.2(c) shows a different strategy in which the partial
products are generated within the tree adder where they will first be used.
This design sacrifices some regularity and lengthens some wires in order to
reduce the total number of long wires.
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Figure 5.3: ED tradeoff curves for three TDM multiplier layouts

SCOT results for each of these layouts are compared in Figure 5.3. Note
that for a 16-bit multiplier, the buffering only consumes extra power and
does not affect delay significantly. Also note that the lengthening of a few
long wires for the “smooshed” design (Figure 5.2(c)) dominates the delay
and causes the smooshed TDM to perform more slowly and to require more
energy than the regular structure. The design shown in Figure 5.2(a) had
the best energy-delay tradeoff curve, and thus was used for all further ex-
periments.
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5.3 DC Findings

We found that Design Compiler was well suited to our optimization tool-
chains. Because it used Primetime for its model of delay, it was able to
perform optimizations that performed especially well in Primetime simu-
lations. Design compiler did not respect our net-lists, and often took ad-
vantage of several oddities in our standard cell libraries that we still do
not fully understand, but by doing so it’s pretty clear it came closer to any
optimum than LSGS.
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Figure 5.4: ED tradeoff curves for various architectures at various sizes

To date, the team has tested 8-bit, 16-bit, 32-bit and 64-bit multipliers.
Figure 5.4 shows how size causes energy to increase as the square of the
size, while delay’s increase is dependent on the architecture. We limited
our investigation to multipliers with only numbers of bits that were an even
power of two.
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5.3.1 Architectures

Multipliers were built and compared with five different architectures and
four sizes.
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Figure 5.5: ED tradeoff for 8-bit multipliers of various architectures

The team has compared various architectures in order to see the real
effect of their differences on the design tradeoffs. The Wallace, TDM, and
4:2 multipliers are implemented with Sklansky final adders while the array
multiplier is implemented with Zimmerman adders.

Figure 5.5 shows how our implementation of various designs compare
in energy usage and delay at 8-bits. These simulations are all performed
without examining effects of capacitance. The 4:2 tree seems to have a mis-
laid critical path which prevents the realization of the performance gains
we would expect from a tree structure. At small sizes, the array performs
comparably to the tree multipliers. The curve with the lowest E-D prod-
uct represents the output from Design Compiler when generating a mod-
ule from pure synthesis (the tool was programmed simply to synthesize
assign y=a*b). Design Compiler appears to use a 4:2 tree without Booth
encoding for low power operation, and a Wallace tree with Booth encoding
for high speed operation.

Figure 5.6(a) shows how the implementation of various designs com-
pare in energy usage and delay for 16-bit multipliers. Note that as the size
of the multipliers increases, the array multiplier begins to slow down; this
is expected due to its asymptotically-linear performance. The behaviorally
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Figure 5.6: ED tradeoff curves at 16, 32, and 64 bits

synthesized curve still outperforms the team’s designs, though it did not
demonstrate lower energy operation.

Figures 5.6(b) and 5.6(c) show how our implementation of various de-
signs compare in energy usage and delay for 32- and 64-bit multipliers.
Note that the 4:2 compressor-tree design is not included for any size above
16 bits.
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5.3.2 Booth Encoding
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Figure 5.7: ED tradeoff curves for radix-4 Booth-encoded and non-Booth-
encoded multipliers

Booth encoding reduces the number of partial products. Figure 5.7
shows its benefits for the 32-bit array multiplier. It’s worth noting that in
all the other structures, Booth encoding improves the area required for the
multiplier, but does not significantly change the energy or delay because
the time required to perform the encoding and compute the partial prod-
ucts is roughly equal to the time saved by removing the stages in the partial
product reduction tree. The nature of these tree-based structures is such
that a large reduction in the number of partial products results in only a
small reduction in the number of logic levels in the tree.
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5.3.3 Final Adders
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Figure 5.8: ED tradeoff curves using Sklansky and Zimmerman final adders

Using parallel prefix adders improves the runtime of the multipliers
significantly. Figure 5.8 compares Sklansky adders to Zimmerman adders
and shows that the improvements offered by optimizing the final adders
are insignificant. Figure 5.8(b) also shows the same comparison at 16 bits
and shows that the Zimmerman adders do not significantly outperform
Sklansky adders.

5.3.4 Asymptotic Performance

The assumption that minimum delay is linear for array multipliers and log-
arithmic for tree multipliers was tested and is supported by our findings.
Figure 5.9 shows the trend for minimum delay with increasing multiplier
size. The fits shown are linear and logarithmic. Equation 5.1 describes the
minimum delay of a TDM multiplier in terms of FO4 delays. Equation 5.2
describes the minimum delay of an array multiplier in terms of FO4 delays.

delay(N) = 10FO4× log2(N)− 7.6FO4 (5.1)
delay(N) = 1.6FO4× N + 12.3FO4 (5.2)
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Chapter 6

Conclusions

The initial goal of this project was to use SCOT to compare the energy-delay
properties of different multiplier designs. The team did not complete this
objective, but was instead able to evaluate several different optimization
tools while still drawing some useful conclusions about multiplier design.

The team was able to evaluate the practicality of several different op-
timization tools for optimizing energy or delay of relatively large circuits.
The team attempted to use SCOT, LSGS, and Synopsis Design Compiler to
complete this objective.

The team believed that the energy-delay optimizations from SCOT were
accurate, but SCOT was limited by run-time considerations. The team took
several steps to limit the number of variables that SCOT was attempting
to optimize, including restricting all gates of the same type to the same
size. These changes did result in speed improvements, but they were not
substantial enough to make SCOT feasible as a general optimization tool
for large circuits. Specifically, 16-bit multipliers were generally feasible to
run in less than 24 hours on the research server, but larger circuits took
weeks to complete or exceeded the available memory on the server.

Large Scale Gate Sizer never suffered from runtime issues, but failed
to produce credible results on any circuits composed of more than a few
gates. In short, LSGS oversimplified the optimization problem, failing to
account for the effects of multiple-output gates, imbalanced rise-fall times,
and various other minor bugs. As a tool still in development, LSGS may
still have potential for use in applications with large circuits, but its current
form does not produce reliable results for multiplier circuits.

Synopsis Design Compiler also does not face runtime issues, and as an
industry standard, its results can be trusted. Unfortunately, DC is some-
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thing of a black box, and does not respect the team’s cell positions, gate
definitions, or even netlists. The lack of physical placement information
in the team’s DC flow meant that the DC results could not credibly ad-
dress the layout differences that are key to distinguishing different tree-
based multipliers. Additionally, Design Compiler was able to synthesize a
behaviorally-defined multiplier that outperformed the team’s designs, sug-
gesting that the team’s choice of gates was not taking advantage of the di-
verse array of cells in the ARM standard library and that the team’s designs
therefore were not credible.

Each of the three optimization tools has applications in circuit design,
but their use in optimizing multipliers was not suitable for the goals of the
multipliers project.



Appendix A

Deliverables

All of our code is stored in an SVN repository on chips, the VLSI lab’s
Linux server. This repository is accessible from anywhere on the Claremont
Colleges via the URI svn+ssh://chips.eng.hmc.edu/srv/svn/mult. Im-
portant directories are listed below:

dc/ Scripts for interacting with Synopsys Design Compiler.

final/ This report

gatesizer/ Scripts for interacting with LSGS

midyear/ The mid-year report

notes/ Miscellaneous documentation

perl/ Multiplier generation scripts

poster/ The project’s poster

presentations/ Presentations about the project

scot/ Scripts for interacting with SCOT

tools/ Miscellaneous scripts (e.g., test runners)

tv/ Test vectors

verilog/ Generated verilog

Where appropriate, readme.txt files have been added to explain the
contents of individual directories.

svn+ssh://chips.eng.hmc.edu/srv/svn/mult
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