# formlabs 😿

# OpenFL: Hacking SL with the Form1+ API

Ben FrantzDale and Matt Keeter {ben, matt}@formlabs.com







# Print pipeline











OpenFL is about supporting

cases that fall outside the usual

Form 1 / 1+ printing pipeline.











#### International Journal of Pharmaceutics

Volume 503, Issues 1–2, 30 April 2016, Pages 207–212



## Stereolithographic (SLA) 3D printing of oral modified-release dosage forms

Jie Wang<sup>a, 1</sup>, Alvaro Goyanes<sup>a, b, 1</sup>, Simon Gaisford<sup>a, b</sup>, Abdul W. Basit<sup>a, b,</sup>



Customizing material files on

Form 1 and Form 1+

### User-defined material files



## PreForm: Material Hacker Edition\*

Use customized material files with PreForm and your Form 1/1+

```
[PrintSettings]
OuterBoundaryOffset = 0.03
InnerBoundaryOffset = 0.12
ScanlineBoundaryOffset = 0.03
outlines
ScanlineSpacing = 0.09
SliceHeight = 0.025
OffsetsNum = 3
Xcorrectionfactor = 1.008
Ycorrectionfactor = 1.008
```

```
Distance from the model boundary - theoretically is laser's radius Distance between any inner boundary offset
Distance from the innermost boundary offset - defines raster
```

#### Line positioning

```
The number of outlines x shrinkage-correction scale v shrinkage-correction scale
```

```
[perimeter]
modellaserpowermw = 20.7
modelxyfeedrate = 800; mm/s
supportlaserpowermw = 24.84
supportxyfeedrate = 800
baselaserpowermw = 24.84
basexyfeedrate = 800
```

[fill]
modellaserpowermw = 20.7

**Exposure** 



\*name subject to change Coming next week!

# OpenFL API

#### What does it cover?



#### Two main modules:

OpenFL.FLP
Read, manipulate,
and write 2D slice files

OpenFL.Printer
Interface between your
computer and a Form 1/1+

#### https://github.com/Formlabs/OpenFL

Modifying

Formlabs Print Files (.FLPs)

# Customizing prints



# What does a print look like?

```
[<TimeRemaining(1891 s) at 0x10b668470>,
 <XYMoveClockRate(60000 Hz) at 0x10b668890>,
 <ZCurrent(80) at 0x10b6688f0>,
 <TiltCurrent(80) at 0x10b668950>,
<TiltFeedRate(472 usteps/s) at
0x10b6689b0>,
 <TiltMove(2362 usteps) at 0x10b668a10>,
 <ZFeedRate(132 usteps/s) at 0x10b668a70>,
 \langle ZMove(-665 usteps) at 0x10b668ad0 \rangle,
 <ZFeedRate(4000 usteps/s) at 0x10b668b30>,
 <WaitForMovesToComplete() at 0x10b668b90>,
 <LaserPowerLevel(39099) at 0x106e97b90>,
<XYMove(3 points) at 0x10b667c18>,
 <LaserPowerLevel(0) at 0x106e97bf0>,
 \langle XYMove(1 points) at 0x10b667c80 \rangle,
 <LaserPowerLevel(39099) at 0x106e97c50>,
 <XYMove(2 points) at 0x10b667ce8>,
 <LaserPowerLevel(0) at 0x106e97cb0>,
```

2D slices (.flp file)

# Laser moves: Power then (x, y, dt) sequence.

```
>>> print laserSequence
[<LaserPowerLevel(39099) at 0x106e97c50>,
 <XYMove(3 points) at 0x10b667c18>,
 <LaserPowerLevel(0) at 0x106e97bf0>]
>>> print laserSequence[1].points
((38352, 32099, 69),
 (38322, 32069, 3),
 (38262, 32166, 8))
```

## **Motor Moves**

Set current and speed, start moves, wait.

```
[ZCurrent (moving=True),
TiltCurrent (moving=True),
TiltFeedRate (usteps per s=472),
ZFeedRate(usteps per s=132),
TiltMove (usteps=2362),
ZMove(usteps=-665),
WaitForMovesToComplete(),
TiltCurrent (moving=False),
ZCurrent (moving=False) ]
```

# Embed things in prints.

```
from OpenFL import FLP
from OpenFL import Printer
from examples.insert material swaps import insert pause before
p = Printer.Printer() # Connect to the printer
layer i = 8
flp = p.read block flp(layer i)
flp = insert pause before(flp, zJog mm=150.0 - 0.2*i)
# Overexpose the next layer w/ 6 more copies of the laser move:
flp += [laser for laser in flp
        if isinstance(laser, FLP.LaserCommand)] * 6
p.write block flp(layer i, x) # Send it back to the printer
p.start printing(0, 16) # Print!
```



# Things... like carbon fiber

# Creating custom designs



#### **UV-**reactive stippling

Stipple patterns are generated in Python then printed onto UV-sensitive paper, turning the 3D printer back into a 2D printer.







#### Single-line lithopane

The laser is scanned across the build platform with continuously changing power

The resin has a log response, so pixel brightness can map directly to laser power.

Project by Dima Megretski



#### **PCB** etching

The laser is used to expose a presensitized PCB, which is then etched to make a panel of boards.

fabispkey by Andy Bardagjy



# Fun!

## Printers as musical instruments





https://github.com/Formlabs/OpenFL

Thanks!

# formlabs 😿