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Abstract— We consider the problem of cooperative search
using autonomous aquatic vehicles, giving a proof-of-concept
demonstration in an aquatic testbed. We implement a point-to-
point controller for remote-controlled submarines with severe
control and buoyancy limitations, develop software to track
their motion and establish reliable communication and control.
We then propose multiple randomized algorithms, based on
Lévy flights, for locating sparse targets in a three-dimensional
bounded environment. These algorithms are tested in simula-
tion, showing that they are competitive with nonrandom sys-
tematic search, while likely also more robust. The simulations
are combined with in-tank tests to display performance under
real physical conditions.

I. INTRODUCTION

While multi-agent coordination for autonomous vehicles

has been studied extensively in two-dimensional environ-

ments [1], [2], [3], little work has been done on the three-

dimensional problem. Many applications for autonomous

vehicles involve three-dimensional domains, notably aerial

and aquatic environments. Such applications include mon-

itoring of atmospheric conditions, surveillance and rescue

operations, among others. Three-dimensional environments

often impose limits on vehicle mobility, ranging from the

non-holonomic constraint of a finite turning radius to the

turbulent effects of air and water currents. Implementing

control algorithms under these conditions can therefore be

a significant challenge.

We consider the problem of cooperative search using au-

tonomous aquatic vehicles. Cooperative underwater robotics

experiments are somewhat few and far between, compared to

land-based work. Several platforms have been documented

in ocean environments [4], [5], in rivers and lakes [6] and

in indoor facilities such as swimming pools [7]. Additional

examples use surface vehicles such as kayaks [8] or low-

speed air vehicles (e.g., balloons) as proxies for underwater

vehicles [9]. Ocean-going vessels can be prohibitively expen-

sive for the university researcher, costing from $500K to over

a million dollars for a larger deep-sea vehicle, depending on

the desired size, sensors, and depth capabilities. Vehicles on

the scale of meters, such as a glider, can still cost on the order

of $100K for a single vehicle. A surface kayak, outfitted with
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autonomous controls and sensors may cost on the order of

$20K. Even in the example with the smallest platform [7],

the vehicles span on the order of a meter and the testbed

arena has the footprint of a room. Independent of cost, these

larger technologies are often prohibitive for smaller campus

laboratories due to space constraints. Many groups do not

have access to marine resources or even dedicated space with

a larger tank or pool. The goal of this work is to build a truly

miniaturized aquatic testbed that fits in the space of a large

aquarium with robots on the scale of centimeters rather than

meters. Such a testbed has the advantage of using cleaner

radio signals due to the size of the tank — the challenge is

the design and control of the miniature vehicles. Our work

parallels a number of prior papers on miniature land-based

robots and takes these small robotics experiments to the

3D domain with swimming vehicles. A major challenge of

this particular testbed is the underactuation of the vehicles,

leading to some redundancy of motion, as discussed in detail

in the manuscript.

In this paper, we implement a point-to-point controller, in

a testbed tank, for mobile sensors with very limited motion

and control capabilities. The robots used are inexpensive, 8

cm long, remote controlled (RC) submarines. By restricting

ourselves to primitive devices, we provide a proof-of-concept

demonstration of how such vehicles may effectively perform

search functions even under severe control and buoyancy

limitations. We use our testbed implementation to investigate

three-dimensional search strategies for single and multiple

vehicles, extending existing two-dimensional search algo-

rithms [10], [11], [12], [13], [14], [15]. The strategies are

based on Lévy flights, in which path directions are chosen

uniformly at random but with a path length sampled from a

power-law distribution, offering the possibility of occasional

long-distance motion. This kind of search is known to be

effective for foraging problems and has been documented

in several animal behavior studies [16], [11], [14]. We

adapt these algorithms to coordinate multiple submarines,

combining simulations with actual tank tests to find efficient

methods of locating sparse targets in the physical testbed.

Section II presents the testbed hardware and systems.

In Section III, we describe single and multi-agent search

strategies, while Section IV presents results from large-

scale simulation. Finally, Section V presents conclusions and

suggestions for future work.

II. TESTBED HARDWARE AND SYSTEMS

The testbed is a 208×70×40 cm tank (Fig. 1). Tracking

data are collected using a set of cameras, through a pro-







for ℓ ≥ x0, where x0 is the minimum step length, and λ
is known as the Lévy exponent. This distribution can be

normalized provided that λ > 1. For 1 ≤ λ ≤ 3, the step

length has infinite variance, resulting in a path that mixes

short and long jumps: ℓ has a scale-free distribution, though

smaller values of λ will generate long jumps more frequently

than larger values. For λ > 3, the variance is finite, and

the central limit theorem applies, resulting in Brownian

motion with a fixed diffusion length-scale determined by

the variance. Intuitively, Lévy flights with λ ≤ 3 are

effective search strategies because the scale-free distribution

occasionally causes an unusually long jump. Thus, the search

agent thoroughly searches a small region of the space, then

jumps to a region that is likely previously unexplored and

begins again. This behavior is similar to that of a foraging

animal who searches for food in a given area with a series

of small movements, then travels a larger distance to another

area to search again.

In our search algorithm, we consider a target to be

discovered if the searching vehicle passes sufficiently close

to it. Some groups have investigated target detection with

noisy sensors, so that there is no guarantee of finding a

nearby target [3], but we will assume for simplicity that any

target within a given detection radius is discovered. Using the

destructive target scheme, we count each unique target and

continue the search until a predetermined number of targets

are discovered.

B. Multi-agent Search Strategies

We have considered four different Lévy search strategies

for multiple agents.

1) Independent search: Each submarine independently

runs a Lévy search in the entire tank.

2) Bounded region search: Divide the tank into regions.

Each submarine is assigned to a region and runs a

bounded Lévy search that only returns target points in

that region. This method is also known as “divide-and-

conquer” [3].

3) Biased angle search: A submarine biases its choice

of direction based on the position of other submarines.

The direction is chosen from a von Mises-Fisher dis-

tribution [22]

f(θ) ∝ eκ cos θ,

which is close to a normal distribution on a circle. This

distribution has previously been used to bias a Lévy

walk when a priori information is known about the

target distribution [12]. In our case, we define θ = 0
to be the direction opposite that of the nearest other

submarine. The parameter κ approximates the recip-

rocal of the distribution’s variance, so that submarines

repel each other with high probability when κ is large,

whereas there is no angular bias when κ = 0. In order

to set κ for a given vehicle, we assume that the distance

d to the nearest other vehicle is known: in our testbed,

position information is passed through the Arduino

microcontroller, though in a real setting it would be

determined by direct inter-vehicle broadcast. We then

let κ = d0/d. Empirically, we have found that the

algorithm’s performance is best when d0 is close to

the detection radius, though it is relatively insensitive

to its exact value. For simplicity, we set d0 to exactly

the detection radius.

4) Biased jump length search: A submarine dynamically

chooses a value of λ for its jump length distribution.

Prior results have shown that λ should approach 1

for optimal search [13]. Therefore, we vary λ towards

1 when other submarines are nearby—they are more

likely to take long jumps—and towards 2 otherwise—

they mostly take short jumps. We let each submarine

adjust λ to be

λ = 1 + e−(d1/d)
2

,

where d is again the distance to the nearest other vehi-

cle. We set the parameter value d1 = 100 cm, so that

λ = 1.5 when the two submarines are approximately

half of the maximal distance from each other in the

tank.

C. Implementation

In order to determine the optimal parameter(s) for each

multi-agent search strategy and the best such strategy overall,

we implemented a simulation framework in MATLAB with

the following settings. The search space dimensions were

chosen to be x × y × z = 208 × 70 × 40 cm. For the

bounded region search for two submarines, we divide the

tank into two halves by cutting across the x dimension. The

simulated detection radius is r = 10 cm. The minimum jump

length is x0 = 5 cm. For path planning purposes we assume

reflective boundaries. The search space contains four targets,

with the same set of targets used in every run for every

simulation type: two distinct targets must be found for the

search to complete. For each of the algorithms (excluding

the biased jump length algorithm), we varied the value of λ
between 1.1 and 3.1 in increments of 0.5. Each setting was

run 5,000 times in simulation. Performance is measured by

the total path length, which is indicative of the total time

spent searching. When there are multiple submarines, the

path length is measured for the submarine that finds the

second unique target, up to the jump in which it finds that

target.

IV. SIMULATION RESULTS

A. One Vehicle

In all algorithms, performance is best as λ approaches 1.

The quality degrades as λ increases, continuing to do so for

λ > 3 as the motion becomes Brownian with decreasing

variance. Thus, frequent long jumps are clearly favorable.

At λ = 1.1, where performance is best among the values

that we implemented, the average search length for two

vehicles performing a bounded region search (693 cm) is

almost exactly half that of a single vehicle (1388 cm), as

one might ideally expect. Interestingly, as λ increases, the

performance of a single submarine degrades faster than that
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Fig. 6. Results from five thousand simulations showing average search
length vs. λ. For ease of comparison, the single-vehicle results are for half

of the search length. Best performance is found at λ = 1.1, consistent with
existing two-dimensional results [10]. The biased jump length algorithm
sets λ dynamically: these results are shown in Figure 7.

of the two-submarine search methods. This is consistent with

the intuition that the longer jumps are crucial for searching in

a larger region such as the entire tank. The results are shown

in Figure 6, which compares half of the single-vehicle search

length with the two-vehicle search lengths.

B. Two Vehicles

Figure 7 compares the results for two submarines at λ =
1.1, showing the 95% confidence intervals for search distance

under the four different strategies.

Two submarines implementing the bounded region

(divide-and-conquer) strategy had the lowest average search

length, consistent with prior results in two dimensions [3].

The method was implemented by dividing the tank into two

equal halves along the yz-plane. The fact that the searchers

only move within their own region means that they do not

waste time overlapping.

The average search length for the biased angle algorithm

was about 1% higher than for the bounded region algorithm

at λ = 1.1. Given the confidence intervals, this difference is

not statistically significant. In our tests, the performance of

the biased angle algorithm appeared relatively insensitive to

the exact value of the parameter d0 (and hence κ). However,

these results suggest that with a more exhaustive study, the

method could conceivably be tuned to the point where it

outperforms the other search algorithms. Note that for d0
too small, κ will be small and the variance in angle will be

large, so the method will not differ from independent search.

For d0 too large, the submarines will repel each other and

therefore avoid the center of the tank.

The biased jump length algorithm performed the worst,

compared with the other strategies with fixed λ = 1.1. De-

termining the best value of the parameter d1 (and hence the

dynamic λ) for this algorithm is again a delicate balancing

act. The average distance between vehicles in this search

seems greater than reasonable, meaning that as in the biased

angle algorithm with large d0, submarines are not spending

enough time in the center of the tank. The performance can
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Fig. 7. Statistical comparison of algorithms for two submarines at λ = 1.1,
showing average search length and 95% confidence intervals. Differences
in performance of bounded region (divide-and-conquer), biased angle and
independent methods are not statistically significant. Biased jump length,
where λ is set dynamically, performs poorly compared to the others at
λ = 1.1.

be improved by increasing d1 further, so as to make larger

values of λ more rare. However, whether those large values

of λ are ever helpful is inconclusive.

C. Comparison with Systematic Search

It is instructive to compare these simulation results with

what one would theoretically expect from a systematic (raster

scan) search of the tank. Comparisons of this sort have

previously been performed in one and two dimensions [23],

[24]. These studies confirmed that in the absence of any

a priori knowledge of the target distribution, one cannot

generally outperform a perfectly executed raster scan search

given a sufficiently large search space. A lower bound for the

travel distance required to search the entire tank with a raster

scan search is calculated as follows. Consider the minimal

distance swept out by parallel but overlapping cylinders,

oriented along the x dimension of the tank, such that in

the cross-sectional yz-plane these cylinders cover the entire

tank. Figure 8 shows that 15 cylinders are needed, given the

y- and z-dimensions of our tank. Since the tank’s length is

x = 208 cm, the length of each cylinder must be at least

x− 2r/
√
2 = 208− 10

√
2 cm, accounting for the additional

hemispherical region detected at the two ends of the cylinder.

This gives a lower bound on the length of the raster scan path

of 15× (208− 10
√
2) ≈ 2908 cm. Thus, the average search

length for a single raster search to find half of all targets

(2 out of 4) distributed uniformly at random in the tank is

bounded below by half of this total distance, or 1454 cm.

It may seem surprising that the single Lévy search vehicle

requires only 1388 cm, a 5% reduction over the appar-

ent lower bound on the raster search. This is a simple

consequence of the raster requiring an integer number of

cylindrical sweeps. If the search space is increased with the

detection radius held constant, the constraint of an integer

number of cylinders will become asymptotically negligible,

and the path length will be approximately

d ≈
y

√
2r

z
√
2r

(

x−
√
2r
)

=
xyz

2r2
−

yz
√
2r

.
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Fig. 8. Cross section in yz-plane of cylindrical regions detected by a
raster search. For complete coverage of cross-sectional area, centers are
placed

√
2r = 10

√
2 cm from each other, requiring at least 5 cylinders in

y-direction and 3 cylinders in z-direction.

Under idealized conditions, this would lead to an approx-

imated average search distance of 1357 cm, which is 2%

below the single Lévy search vehicle distance. However,

this assumes that the raster search can be executed perfectly,

which is highly unlikely in real aquatic conditions. The Lévy

search, by contrast, is likely to be far more tolerant of im-

precision because it is in itself a random construction. Thus,

even in near-asymptotic conditions, it is not implausible that

the Lévy search would slightly outperform the raster scan.

D. In-Tank Test

As a proof of concept, we tested the Lévy flight in our

physical testbed. This test used the same path generation

code as in the simulations, seeded with the same value for

every run. Figure 9 plots the submarine’s actual motion, as

measured from data saved by the tracking system, against its

prescribed path.

The aquatic vehicles employed in the experiments were

tiny, low-cost ($40) toy submarines. While the tests provided

evidence that low-cost hardware could be used, we have

determined that for future testing, we will move to a still

inexpensive ($125) but larger and more stable vehicle.

Fig. 9. Typical Lévy search without targets. Path of 955 cm is two orders of
magnitude greater than the length of the vehicle and is limited by buoyancy
and battery time. Red path depicts calculated Lévy flight trajectory. Blue
path depicts submarine’s actual trajectory.

V. CONCLUSIONS AND FUTURE WORK

We have provided a proof-of-concept demonstration of

cooperative search algorithms for aquatic vehicles with very

limited control capabilities. Using inexpensive remote con-

trolled (RC) submarines, we have developed a point-to-

point controller that functions even under poorly regulated

buoyancy and mobility conditions. We have tested a number

of different three-dimensional random search algorithms,

based on Lévy flights, for finding sparse targets using these

submarines. Our algorithms perform optimally when the

Lévy exponent, specifying the degree of the power-law

distribution for step lengths, approaches 1. This mirrors

earlier findings for Lévy search in two dimensions [10].

We have found in simulations that for a Lévy search with

two submarines, bounding the allowable search region for

each submarine (divide-and-conquer) results in essentially

ideal performance, maintaining almost the identical cumula-

tive search distance and thus reducing search time by 50%.

To within statistical error, this performance is comparable to

that of the biased angle method that repels nearby vehicles,

as well as to that of the independent search method.

Remarkably, a Lévy search outperforms a systematic raster

sweep of the entire tank: a single submarine requires an

average Lévy search distance that is 5% below a theoretical

lower bound on the raster search distance. This is partly due

to finite-size effects in the tank. The raster search requires an

integer number of sweeps, resulting in a loss of efficiency

for small volumes. However, our results suggest that even

under asymptotic (large volume) conditions, the Lévy search

will be competitive with raster search. We would expect that

the randomness inherent in the Lévy search would make it

more robust to control imprecision than the raster search,

which requires perfect execution with precise sharp turns

in order to maintain its performance quality. Consequently,

under imperfect experimental conditions or environmental

disturbances, the three-dimensional Lévy search may signif-

icantly outperform systematic search methods. Quantifying

this effect remains an open problem. Drift and sensor posi-

tioning errors may be modeled, for example, by Brownian

motion. While ocean currents may induce a directional bias,

a simple unbiased model would likely provide a lower bound

on the error in raster search. This approach, along with

more detailed in-tank comparisons, could help clarify the

comparative advantages of Lévy search.

Another direction for further research is the extension

of our study to more than two vehicles. This is likely to

require a larger physical testbed and a more sophisticated

tracking system. Additionally, a second-generation testbed

might involve submarines with somewhat better buoyancy

control. While there are merits to using imperfect devices

in order to create control challenges, the search distance

in current in-tank tests may be excessively attributable to

buoyancy correction, and make it difficult to perform a true

physical testbed analysis of Lévy search algorithms. One

option is to use submarines with a ballast system, rather

than propellers: preliminary tests with the Graupner U-16



model [25] show promise. An interesting problem would then

consist of optimally designing a controller for these second-

generation vehicles, based on their own motion limitations.
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