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Abstract

Modern systems for computer-aided design and manufacturing (CAD/CAM) have
a history dating back to drafting boards, early computers, and machine shops with
specialized technicians for each stage in a manufacturing workflow. In recent years,
personal-scale digital fabrication has challenged many of these workflows’ build-in
assumptions. A single individual may control the entire workflow, from design to
manufacture; they will be using computers that are exponentially more powerful
than those in the 1970s; and they may be using a wide variety of tools, machines,
and processes.

The variety of tools and machines leads to a combinatorial explosion of possible
workflows. In addition, tools are based on boundary representations, which are fragile
and can easily describe nonsensical objects. This thesis addresses these issues with
a set of tools for end-to-end digital fabrication based on volumetric solid models.
Workflows are modular, making it easy to add new machines, and a shared core of
path-planning operations reduces system complexity. Replacing boundary represen-
tations with volumetric representations guarantees that models represent reasonable
real-world solids.

Adaptively sampled distance fields are used as a generic interchange format. Func-
tional representations are used as a design representation, and we examine scaling
behavior and efficient rendering. We present interactive design tools that use these
representations as their geometry engine. Data from CT scans is also used to populate
these distance fields, showing significant benefits in file size and resolution compared
to meshes. Finally, these representations are used as inputs to a modular multi-
machine CAM workflow. Toolpath generation is implemented, characterized, and
tested on a complex solid model. We conclude with a summary of results and recom-
mendations for future research directions.

Thesis Supervisor: Prof. Neil Gershenfeld
Title: Director, MIT Center for Bits and Atoms
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Chapter 1

Introduction

The evolution of computer-aided design and computer-aided manufacturing (CAD/-

CAM) tools have left users with a combinatorial explosion of different tools and

workflows, illustrated in Fig. 1-1. A single user can scan a physical object with

a depth-field camera, touch up the mesh in Rhino, perform path planning in Part-

works, and manufacture the object on a Shopbot – or a myriad of other possible

combinations.

Scanning tools Design tools Path planning Machine output

Figure 1-1: Combinatorial explosion

In the past, each of these processes was handled by a specialist. Complexity was

managed through segmentation of knowledge. However, with the increased popularity

of fab labs [33], hackerspaces, etc., there has been a focused interest in personal-scale

fabrication. In these environments, the same individual is in control of the entire
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workflow, from design to manufacture; furthermore, this individual may be using a

wide variety of machines with different parameters and interfaces.

The combinatorial explosion of machines and tools has several major disadvan-

tages. A single user may find it challenging to master multiple dissimilar workflows.

In addition, the chain of importing and exporting files from one tool to the next can

lead to errors: files that look good in design tools can break in CAM tools, leading

to nonsensical toolpaths or failed 3D prints. This problem is exacerbated by the fact

that these tools usually use boundary representations (e.g. triangulated meshes),

which can easily represent nonsensical solid models.

This thesis presents a complete CAD/CAM workflow based on hierarchical, volu-

metric object representations; Figure 1-2 illustrates the workflow. We begin with an

implementation of adaptively sampled distance fields as a generic volumetric object

format. Next, we discuss strategies for populating these data structures, including

custom CAD software software and volumetric scanning. Finally, we conclude with

a discussion of path planning and manufacturing, then showcase a complex model

fabricated with this workflow.

Input
Path planning Manufacturing

CAD tools Functional
representation

Sampled distance field

CT scanner Density array

Lattice

Height-map

2D

3D subtractive

Laser / vinyl cutter

3-axis mill

5-axis mill

Figure 1-2: End-to-end CAD/CAM workflow
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Chapter 2

Volumetric Object Representations

2.1 Historical considerations

Before the advent of computer-aided design, engineers designed on drafting boards.

These systems were often mechanically assisted to allow engineers to draw precise lines

and curves. Early CAD tools showed this legacy, focusing on accurace placement of

points, lines and curves.

Operators such as extrusion, lofting, and turning turn these flat sketches into solid

objects. The edges of a two-dimensional drawing are transformed into solid faces in a

three-dimensional representation, formalized by the boundary-representation (b-rep)

paradigm [7].

Thanks to this gradual evolution, nearly all modern CAD/CAM systems use b-

reps and surface modeling. B-rep popularity was also influenced by early computing

hardware: b-reps and triangulated meshes are simple to render, even with limited

processing power. However, there are significant downsides to the widespread use of

boundary representations.

To be valid, a boundary representation must be “water-tight”: it must define a

complete, closed surface without cracks, holes, or co-incident faces. This is a chal-

lenging criterion to meet, as evidenced by tutorials and software tools specifically to

help users clean broken meshes [27, 32]. The chain of exports and imports described

in the previous chapter includes plenty of opportunities for meshes to become invalid
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or nonsensical.

A related downside is complexity. Developing a robust b-rep geometry kernel is a

challenging task. There is a high barrier to entry for individuals who want to create or

modify their own design tools. Rapid prototyping of CAD software, while somewhat

uncommon, is hindered by the b-rep paradigm.

2.2 Volumetric representations

This chapter presents a general-purpose volumetric representation for solid objects,

with details on implementation and performance. A volumetric data structure must

represent a closed, solid volume in an unambiguous manner. It should be possible to

query an (x, y, z) coordinate and learn whether this point is inside of the solid; such

a query is challenging (or even nonsensical) on a boundary-representation, where the

boundary could be open or discontinuous.

Voxel1 data is a trivial volumetric structure. A solid can be represented by a 3D

array of Boolean values, where each Boolean represents either empty or filled. Data

acquired from a CT scanner is often in this format (although the values are density

samples, rather than Booleans). However, this representation scales poorly.

Introducing hierarchy allows models to take advantage of spatial locality: filled

regions are typically clustered near each other, not randomly spread out in space.

One basic hierarchical volumetric structure is the octree [30]. In an octree, a three-

dimensional spatial region is repeatedly split into eight subregions; cells are labelled

as solid, empty, or branching. This has the disadvantage that model surfaces must

be represented by many cells at the smallest level of recursion.

There are various extensions to the octree structure. Extended octrees [8] add

a set of special nodes to represent planar faces, edges, and vertices. Dyllong [16]

goes even farther, storing fragments of CSG descriptions in octree cells for use in

later model reconstruction. Both of these octree variations are too specific for our

purposes. The first is optimized for a triangle-based workflow, and the second for a

1A “voxel” is the three-dimensional equivalent to a pixel
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purely CSG workflow.

Instead, we choose to base our volumetric representation on adaptively sampled

distance fields (ASDFs), as described in [17, 13]. In the past, ASDFs have been

used as the underlying representation for both sculpting-style design tools [43] and

machining simulations [46], among other applications.

2.3 Data structure

In the ASDF data structure, the Euclidean distance to a solid’s surface is sampled

and stored in a hierarchical structure; positive distances are outside and negative

distances are inside the solid. These distance samples reduce the number of cells

required and allow for calculation of surface normals.

The ASDF described in this chapter is implemented as an extension to a tradi-

tional octree [30]. A discrete spatial lattice is subdivided with up to eight-fold splits

at each level, as shown in Fig. 2-1. The region is discrete, with a minimum possible

voxel size and larger cells that contain multiple smaller voxels.

Figure 2-1: Octree cell splits

Each cell in the octree is labelled as full, empty, branching, or leaf. The first

three states are common to traditional octrees; the last is unique to the ASDF. This

implementation can be more precisely described as a superficial or compositive ASDF

[5, 46], in which only cells containing an object boundary (“leaf” cells) store accurate

distance samples.

The implemented data structure is shown in Table 2.1. The Interval data type

used for bounds contains two floating-point values (upper and lower). The data

member variable is used for operation-dependent storage (e.g. triangulation uses it

to store vertex indices).
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Name Type Description
state enum FILLED, EMPTY, BRANCH, or LEAF

X, Y, Z Interval Floating-point bounds
branches ASDF* Pointers to children

d float[8] Distance samples
data void* Miscellaneous data pointer

Table 2.1: Member variables of the ASDF structure

Some data duplication occurs within a full ASDF tree. Neighboring cells often

share distance samples, and the cell bounds could be reconstructed from the bounds

and lattice resolution of the top-level region. When implementing this data struc-

ture, RAM was deemed to be cheaper than both CPU and programmer time, so the

duplication was allowed to persist; strategies to mitigate this are described in [5, 9].

2.4 Cell reconstruction and combination

Within an ASDF leaf cell, interpolation is used to determine the object’s boundary.

Given a position triplet (x, y, z), cell bounds, and distance values at cell corners,

trilinear interpolation produces a value dx,y,z. If this value is less than zero, then the

point (x, y, z) is within the object; otherwise, it is outside.

In ordinary octrees, cells can be collapsed if they are all full or all empty. The

ASDF structure adds another option: leaf cells can be combined if the resulting

interpolation error is sufficiently small. In other words, as long as interpolation on the

parent cell accurately reproduces its children, the data in the children is superfluous.

This is an advantage compared to the octree, which must always recurse down to

minimum voxel size along object edges.

The algorithm for octree simplification is given in Alg. 2.1. The algorithm exam-

ines each axis in turn, checking to see whether each pair of branches can be merged

along this axis. This implementation does not require octrees to be “complete” (i.e.

divided eight-fold at every stage) – requiring complete octrees would force volume

sizes to be powers of two, which was deemed too strict a limit for a general-purpose

volumetric format.
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Algorithm 2.1 ASDF simplification (non-recursive)

function Simplify(asdf)
for each axis x, y, and z do

merge ← true
for each pair of branches that could be merged along this axis do

A← first branch
B ← second branch
if A or B is of type BRANCH then

if A splits on this axis or B splits on this axis or
A and B split differently then

merge ← false
end if
if not (A and B are of type BRANCH) then

merge ← false
end if

else if A or B is of type LEAF then
if interior samples can’t be reconstructed accurately then

merge ← false
end if

else if A’s type is different from B’s type then
merge ← false

end if
end for
if merge is true then

for each pair of branches that could be merged along this axis do
A← first branch
B ← second branch
Collapse A and B into A
if A or B is of type LEAF then

Set A’s state to LEAF

else if A and B are branches then
Move B’s branches to A.

end if
Remove B from the tree

end for
end if

end for
end function
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Figure 2-2 shows an ASDF being simplified along the Y axis. The two leaf cells

on the left are merged into a single leaf cell which reconstructs its interior values with

interpolation. The two branch cells on the right are consolidated into a single branch,

which is only possible because neither of them splits on the Y axis; this is tested in

line 8 in the pseudo-code.

L

L

B

B

B

L B B

x

y

Figure 2-2: ASDF simplification on y axis

Note that this algorithm is non-recursive; it assumes that branches of the provided

ASDF are already simplified as much as possible. This is consistent with “bottom-up”

ASDF construction [13].

Figure 2-3 compares an octree and an ASDF representation of a planar model.

Red cells are filled; blue are empty; green are leaf cells. Note that in the ASDF, long

flat edges are stored in a single green leaf cell. The curving edges of the shape are still

stored in small voxels; the reconstruction error threshold can be adjusted to allow for

more or less cell combination.

Cell counts between ASDFs and pure octrees are compared in Fig. 2-4. The

wheel model shown in Fig. 2-3 is rendered at a variety of resolutions. As expected,

the ASDF consistently requires fewer cells than the octree. Furthermore, ASDF cell

count stabilizes at a particular value, dependent on the acceptable error level used

when merging leaf cells.

Figure 2-5 examines leaf cell combination in more detail. It was generated by

representing a circle as ASDF, with an increasing voxel resolution and varying levels
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Figure 2-3: Cells in octree and ASDF
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Figure 2-4: Cell count in octree and ASDF

of interpolation error. As expected, the number of voxels stabilizes at a level that

increases as the maximum allowed interpolation error decreases. These results are

comparable to results from [17] examining sample counts as a function of maximum

error level.
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Figure 2-5: Number of cells defining circle

2.5 Rotation performance

Because octrees are non-isotropic data structures, they often show performance vari-

ation with rotation. Figure 2-6 examines ASDF cell count as a function of rotation

about two axes. Each ASDF was generated from an cube of side length 1, rendered

in a 2× 2× 2 region with 128 voxels/unit resolution.

The data indicates some degree of isotropy: cell count varies by a factor of three

across the range of rotation angles. Dark lines at appear 90◦ intervals, corresponding

to rotated axial alignment.

2.6 Height-map rendering

In Chapter 6, we discuss path planning on discrete lattices and distance-transformed

images. As such, a rendering pipeline from ASDFs to bitmaps and height-maps is

necessary.

Others have used sphere tracing [19] to render ASDFs; however, this strategy re-

quires either a complete ASDF or a superficial ASDF with various guarantees that
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Figure 2-6: Rotation performance of ASDF

cannot be made in our models [5]. It is possible to render ASDFs by treating them

as implicit surfaces, then applying spatial subdivision and interval arithmetic as de-

scribed in [15] and in Alg. 3.2. This strategy queries into the ASDF data structure

to check whether a region is filled or empty.

In practice, we have found that recursion into the ASDF tree is significantly more

efficient than recursion on the spatial region. Algorithm 2.2 describes the general

process of rendering an ASDF data structure. It allows for coordinate transforms

between the view frame (which defines the render region) and the ASDFs cells (which

define frames for interpolation). We implemented rotation about the x and z axes

parameterized by α and β variables, but this could be extended to arbitrary coordinate

mappings (e.g. for rendering with perspective).

Figure 2-7 shows an ASDF rendered to a height-map; the source file is a sphere

with internal microstructure (inspired by [42]).

The running time of ASDF to height-map rendering depends on both ASDF res-

olution and output image resolution. The relationship is examined in Fig. 2-8.

Surprisingly, lower-resolution ASDFs are not necessarily faster to render using this

strategy. For low-resolution ASDFs, the loop over voxels in leaf cells begins to domi-
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Algorithm 2.2 ASDF rendering algorithm

function ASDFtoHeightMap(asdf, region)
if region is entirely outside the bounds of asdf then

return
end if
Shrink region based on bounds of asdf

(taking coordinate transforms into account)
if asdf is a LEAF or FILLED cell then

for each voxel in region do
Transform voxel into asdf’s coordinate frame
if the voxel is outside of asdf’s bounds then

continue with next iteration of loop
end if
if asdf is a FILLED cell or interpolated value at voxel is < 0 then

Fill in pixel based on voxel’s height
end if

end for
else

ASDFtoHeightMap(branch, region) for each branch of asdf
end if

end function

Figure 2-7: Height-map rendering of ASDF
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nate the running time, as each leaf cell spans a larger number of voxels. Switching to

a recursive strategy for leaf cell rendering would eliminate this discrepancy, but was

not implemented.
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Figure 2-8: Height-map rendering of ASDF

2.7 Shaded rendering

Height-maps are useful for three-axis machining, but for full five-axis machining,

surface normals are also often necessary. Normals can be estimated by taking the local

gradient of the distance field within leaf cells, though this leads to C1 discontinuities

[5]. Algorithm 2.2 is used with slight modifications: instead of checking single pixels,

all corners of a projected pixel-cubes are checked. This prevents errors due to sampling

frequency.

The same microstructure file is rendered with normals and shading in Fig. 2-9.

In the left image, x, y, and z normals are interpreted as R, G, and B color values;

the second image is shaded based on the normal angle.

33



Figure 2-9: Normal and shaded rendering of ASDF

Running time for shaded rendering is shown in Fig. 2-10. The effect discussed

above – in which lower-resolution ASDFs take longer to render – is more severe,

since the work done to render a single pixel is more significant. Still, optimizing both

height-map and shaded rendering speed was a low priority, as the time cost is incurred

only once in the CAD/CAM workflow.
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Figure 2-10: Shaded rendering of ASDF
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2.8 Triangulation

Despite the thesis-wide emphasis on volumetric representations, triangulated meshes

have their place. Modern graphics hardware can easily render thousands or millions

of shaded triangular faces. As such, ASDF triangulation routines were developed to

visualize the volumetric data files.

Marching cubes [29, 20] is a fundamental algorithm in computer graphics. Basic

implementations can produced flawed meshes due to ambiguities in neighbouring

cells; there are a variety of strategies to resolve these flaws [37, 28]. The chosen

meshing algorithm, marching tetrahedrons, is an alternative to marching cubes that

– while still simple to implement – does not require special cases to resolve inter-cell

ambiguities [36].

The implementation relies on the fact that the solid’s isosurface will only pass

through leaf cells. Filled and empty cells can be ignored. The algorithm traverses

the tree recursively, keeping track of both the current cell and neighboring cells with

which it shares faces. When a leaf cell is found, it is subdivided into six tetrahedrons

(shown in Fig. 2-11), each of which may contain up to two triangle faces.

Figure 2-11: Tetrahedral decomposition of cube

Interpolation is used along tetrahedron edges to find the isosurface’s point of

intersection. The vertex normal is found by taking the gradient of the leaf cell’s dis-

tance field at the chosen position; vertices shared between cells are given an averaged

normal.

To reduce output geometry size, the algorithm produces indexed geometry: ver-

tices are stored only once and triangles are defined as a set of three indices into the
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vertex buffer. The algorithm keeps track of neighbouring cells to merge shared ver-

tices. Before creating a new vertex in a given leaf cell edge, we check that the vertex

has not yet been created by any of the neighbours which may share it. Examples of

shared edges are shown in Fig. 2-12.

Figure 2-12: Edges shared by two and four neighbors

Because the ASDF contains leaf cells of various sizes, the resulting mesh is effec-

tively decimated: large leaf cells become large triangles, and small leaf cells become

small triangles. Figure 2-13 shows a triangulated model. No additional decimation

was performed on this mesh; the large triangles are simply the triangulation of large

ASDF leaf cells.

Figure 2-13: Triangulated mesh, showing decimation

Note that meshes generated with this strategy may not be water-tight. In partic-

ular, there will be zero-area cracks in between leaf cells at differing depths, visually
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explained in Fig. 2-14. As the mesh is only being used for visualization purposes,

these cracks are not a concern. If watertight meshing is required, there are many

relevant algorithms in the literature (e.g. [23]).

Figure 2-14: Zero-area crack on multi-scale intersection

Marching tetrahedrons is also simple to parallelize, as each cell is evaluated in-

dependently. Our parallel implementation uses eight threads to evaluate the eight

branches of the top-level octree. The resulting vertex and index buffers are con-

catenated (and indices are modified to account for the offset of their vertices within

the larger buffer). Note that indexed geometry is not shared between independent

threads; vertices on the edges between octants may be duplicated in the resulting

vertex buffer.

Figure 2-15 shows triangulation time on the key model from Fig. 2-13. The time

taken appears to be sublinear when plotted against voxel count, and multithreading

gives a 2.5× improvement.
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Chapter 3

Functional Representations

3.1 Motivation

Though ASDFs are a suitable representation for solid objects, they do not lend them-

selves to direct design. A higher level of abstraction is desirable; ideally, a higher-level

representation that easily populates ASDF cell corners.

This chapter introduces the use of functional representations (or F-reps) as a

backend for CAD tools. A functional representation defines a solid model as an

implicit surface that takes in coordinates and returns a value, i.e. f(x, y, z) → R.

Values greater than zero are outside of the object; equal to zero are on the surface of

the object; and less than zero are inside.

Functional representations have several advantages over boundary representations.

When working with boundary representations, rendering is easy and computational

solid geometry is algorithmically challenging. F-reps have the opposite properties:

rendering is computationally intensive, but CSG is trivial. Given the trends in com-

puting power, computational difficulty is preferable to algorithmic difficulty. F-reps

also have arbitrarily high resolution, as the expression can be evaluated at as many

points as desired. Finally, there exists an efficient rendering strategy based on spatial

subdivision which dovetails with ASDF creation and population.
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3.2 Prior work

The use of f-reps for design dates back to the 1970s. The Hyperfun project is one

of the earliest such projects [14]; it defines a standard language for describing f-rep

based shapes and provides plugins for rendering f-reps in Pov-ray (an open-source

raytracing package).

In recent years, individuals from the Hyperfun team have created a commercial

plug-in for Rhino named Symvol™[47], which uses f-reps as a flexible backend for

computational solid geometry. Finally, the Shapeshop project allows users to interac-

tively sculpt three-dimensional shapes by drawing lines and curves; again, f-reps are

used as a backend for CGS [45].

These projects are similar in that they are purely design tools; they do not in-

tegrate into a complete CAD/CAM workflow without first exporting to boundary

representations. Furthermore, they each impose different limitations on workflows in

order to create a particular user experience. The f-rep engine described in this chapter

is both very general and designed for use in a complete CAD/CAM workflow.

3.3 Operations

There is a wealth of literature on modeling with implicit surfaces, dating back to the

1970s and continuing up into the present day [44, 41, 6, 18]; this section gives an

overview of common operations that can be performed on distance-metric implicit

surfaces.

Computational solid geometry can be performed using the min and max operations,

as shown in Table 3.1.

CSG Operation Implementation
A ∪B min(A,B)

A ∩B max(A,B)

Ā -A

Table 3.1: Basic CSG operators

Coordinate transforms allow for more sophisticated deformations, including scal-
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ing, tapering, shearing, etc [4]. A few basic coordinate transforms are listed in Table

3.2. More sophisticated transforms including shears and tapers were also implemented

in the library of standard functions.

Operation Implementation
Translation (x, y, z)→ (x− x0, y − y0, z − z0)
Scaling about origin (x, y, z)→ (x/sx, y/sy, z/sz)
Rotation about z axis (x, y, z)→ (cosαx+ sinαy,− sinαx+ cosαy, z)

Table 3.2: Sample coordinate transforms

All of the operations listed above ignore distance metric values; they would work

equally well on a Boolean function f(x, y, z) → [True, False]. Using the distance

metric opens up new possibilities for object combination and blending [39, 25]. A few

examples are shown in Table 3.3, and the morph operator is demonstrated in Fig.

3-1.

Operation Implementation

Blend min(min(A, B),
√
|A|+

√
|B| − r)

Morph d× A + (1− d)× B

Shell max(A− t/2,−t/2− A)

Table 3.3: Multi-object combination

Figure 3-1: Smooth morphing between two shapes

3.4 Graph representation

An f-rep expression can be viewed as a directed acyclic graph of operators. Each

operator has a fixed number of arguments which point to either other operators,

numerical constants, or the x, y, and z position variables.
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The evaluation time for such a graph is proportional to the number of nodes. To

make evaluation more efficient, duplicate nodes should be merged. Consider the ex-

pression max(X*X+Y*Y-1, -(X*X+Y*Y-0.5)), representing a annulus. Without dedu-

plication, it is described by the graph shown in Fig. 3-2a; with deduplication, it is

described by the sparser graph in Fig. 3-2b.
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Figure 3-2: Effects of deduplication

3.5 Language design & parser

For ease of use, the f-rep workflow accepts strings and parses them into expression

graphs. This enables simple design tools which perform basic string manipulation

then pass expressions to the geometry engine. The chosen syntax is a sparse, prefix-

notation language (with details described in Appendix A). The use of prefix notation

allows the parser to be implemented with basic recursion, as shown in Alg. 3.1.

The parser performs deduplication on incoming clauses. Graph nodes are cached

in arrays sorted by operation (e.g. min, max) and tree depth (defined as maximum

distance to a constant, x, y, or z node). The Deduplicate procedure checks for
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Algorithm 3.1 Parser pseudo-code

function GetToken(x, y, z)
Read next token t from input stream
if t is an atom then

Construct node n from t

else if t is a map operation then
x’←GetToken(x, y, z)
y’←GetToken(x, y, z)
z’←GetToken(x, y, z)
n←GetToken(x’, y’, z’)

else
Call GetToken to get appropriate number of arguments
Construct node n from t and arguments

end if
n ← Deduplicate(n)
return n

end function

a node with matching opcode, rank, and arguments. If none is found, then the

argument is saved in the cache and returned; otherwise, the argument is freed and

the cached node is returned instead.

As defined above, the map operator applies a coordinate transform m(x, y, z) =

(x′, y′, z′) to another expression. Näıvely, map operations can be implemented using

find-and-replace: to apply the coordinate transform x′ = y, y′ = x, simply replace all

instances of X in the expression with Y and vice versa. However, creating a specific

operator has a major advantages. The näıve implementation increases the size of a

string by O(nxLx + nyLy + nzLz), where nx,y,z is the number of occurrences of X,Y

or Z and Lx,y,z is the length of each symbol’s replacement. This leads to a geometric

increase in string size. Using the dedicated map operator increases the string length

by only O(Lx +Ly +Lz), changing the growth rate from geometric to arithmetic and

reducing parser load.

3.6 Packed data structure

When looking at expression trees, one’s first instinct is to evaluate them recursively.

However, simple recursive evaluation invites a host of problems related to caching.
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The evaluator should ensure that each node is only evaluated once, so a cached result

must be stored. When nodes are activated and deactivated (as discussed in Section

3.8), cache invalidation becomes challenging.

Instead, our implementation evaluates trees from the bottom up. Each node is

assigned a rank, where constants are rank -1; x, y, and z are rank 0; and all other

nodes are one greater than their largest child’s rank. Nodes are then “packed” into

rows (implemented as arrays of pointers) by rank order. A visualization of a graph

“packed” in this manner can be seen in Fig. 3-3.
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Figure 3-3: Packed tree

Evaluation proceeds up the rows in increasing rank order, with each node storing

the result of its operation. This ordering can be interpreted as a topological sort on

the graph nodes [12, Chapter 22]. Evaluation on the graph above would first solve X

and Y (storing results locally), then X*X and Y*Y (looking up the stored results from

X and Y), then X*X+Y*Y, and so on (the constants are not evaluated, as their values

are unchanging).

3.7 Render strategy

Interval arithmetic [35] is used to efficiently render a math expression into an ASDF

or height-map image, as described in [15]. Pseudo-code for the evaluation is shown

in Alg. 3.2.

Evaluating the tree on an interval produces upper and lower bounds for the result.

If the upper bound is below zero, then this region is unambiguously filled; similarly, if

the lower bound is above zero, then the region is unambiguously empty. In ambiguous

cases, the region is divided and Render is called recursively.

Recall that the region is a discrete lattice, rather than a continuous spatial region.
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As such, single-voxel regions are not subdivided. Finally, the function Output is a

placeholder that depends on the output format (i.e. height-map, ASDF).

Algorithm 3.2 Evaluation pseudo-code

function Render(tree, region)
if region is of volume 1 then

Output(region, LEAF)
else

d← EvaluateInterval(tree, region)
if d.upper < 0 then

Output(region, FILLED)
else if d.lower >= 0 then

Output(region, EMPTY)
else

Output(region, BRANCH)
PruneTree(tree)
Subdivide region into subregions
Call Render(tree, subregion) on each subregion
UnpruneTree(tree)

end if
end if

end function

3.8 Tree pruning

Evaluating the entire math expression at every point is inefficient, as there are often

sections of the tree that can be skipped.

Consider evaluating two expressions A and B on a region R, using interval arithmetic

as discussed above. Assume the results are A(R) = (5,10) and B(R) = (-3, 3).

Because B’s value is strictly below that of A in this region, min(A,B) = B for any

region contained within R. Therefore, when recursing on subregions within R, A can

be ignored and should not be evaluated.

Tree pruning is implemented as a single pass from the root to the leafs of the

packed tree, with pseudocode given in Alg. 3.3. Each node has a Boolean mark

variable. If this mark is true when the node is reached, then the node is disabled.

Nodes are disabled by swapping them to the back of their row and decrementing
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the count of active nodes in that row. The total number of nodes disabled for each

row and recursion level is stored. This allows the system to re-activate them when

popping out to a shallower recursion level.

Algorithm 3.3 Tree pruning

function PruneTree(tree)
Mark every node in the tree
Unmark the root node of the tree
for each row in the tree, from root to leafs do

Initialize disabled node count to 0 for this row and recursion level
for each node N in this row do

A ← N’s first argument
B ← N’s second argument
if N is marked then

Swap N to the back of this row’s array
Decrement active node count of this row
Increment disabled node count

else if N is a max operator then
if A.result ≤ B.result then

Unmark B

else if A.result ≥ B.result then
Unmark A

else
Unmark A and B

end if
else if N is a min operator then

if A.result ≥ B.result then
Unmark B

else if A.result ≤ B.result then
Unmark A

else
Unmark A and B

end if
else

Unmark A and B

end if
end for

end for
end function

In certain rendering modes, only the occupancy value of the result matters. When

rendering a height-map lattice, only occupancy matters; in contrast, when construct-
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ing a distance field, the actual sample value is needed. When only occupancy matters,

a second pruning pass can deactivate a larger set of nodes. To explain this second

pass, we will define the term “Boolean” in the context of an numerical interval to be

true if zero is not contained within this interval, i.e. an interval A | 0 6∈ A. A Boolean

interval can be interpreted as an interval without ambiguity in regards to occupancy.

The Boolean pruning pass checks two conditions to determine if a node can be

disabled. First, the intermediate result stored in that node must be a Boolean interval.

Second, that node must be connected to the root of the tree only by nodes where

tightening of the intermediate interval will not change the top-level result from non-

Boolean to Boolean, i.e. nodes with operators in the set

{f | ∀a ∈ {set of Boolean intervals} 6 ∃a′ ⊆ a such that 0 ∈ f(a) and 0 6∈ f(a′)}

This ensures that nodes aren’t disabled when ambiguity can be resolved by tightening

the interval.

To illustrate the second condition, constrast max(A, B) with A + B. If A results

in a Boolean interval, then tightening that interval won’t change the result of max(A,

B) from non-Boolean to Boolean – at this point, that is determined by B. In contrast,

tightening the interval of A could change A + B from non-Boolean to Boolean:

A B max(A, B) A+B

[−4,−1] [−2, 2] [−2, 2] [−6, 1] (not Boolean)

[−4,−3] [−2, 2] [−2, 2] [−4,−1] (Boolean)

Therefore, A could be disabled if it appears in max(A, B), but not if it appears in A

+ B.

Pseudo-code for this pruning pass is shown in Alg. 3.4. This pseudo-code assumes

that the disabled node count has already been initialized (i.e. by Alg. 3.3). The

pseudo-code re-uses the same mark variable; in this case, it refers to whether or not

a node meets the second condition for pruning discussed above.

The disabled node count is used for unpruning, which is shown in Alg. 3.5. In a

single pass through the rows, the active node count is increased by the number of nodes
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Algorithm 3.4 Boolean tree pruning

function PruneTreeB(tree)
Mark every node in the tree
for each row in the tree, from root to leafs do

for each node N in this row do
if N is marked and N’s result interval is Boolean then

Swap N to the back of this row’s array
Decrement active node count of this row
Increment disabled node count

else if N is not marked or N is an operator other than
max, min, neg, mult then

Unmark N’s arguments.
end if

end for
end for

end function

disabled in the previous PruneTree (and possibly PruneTreeB) operation(s).

Algorithm 3.5 Tree unpruning

function UnpruneTree(tree)
for each row in the tree do

c← disabled node count for this row and recursion level
Increase active node count for this row by c

end for
end function

Figure 3-4 shows the effects of this tree pruning, tested on the f-rep font showed

in Fig. 3-5. The x axis is render recursion level: the full region is level 0, the first

subdivision of the region is level 1, the next subdivision is level 2, etc. The y axis

shows the average number of nodes active at that level.

The results are dramatic: at the lowest level of recursion, there are on average

200× fewer active nodes. As expression evaluation time is directly proportional to

the number of active nodes in the tree, this provides a significant improvement in

running time; this gain is compounded by the fact that there are geometrically more

regions to be evaluated as recursion level increases.
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Figure 3-4: F-rep pruning in action

3.9 Scaling behavior

To examine scaling behavior, we compared the performance of an f-rep based font to

a similar vector font. The chosen text was ten lines of “lorem ipsum”, a standard

placeholder text string commonly used in design templates, and the two fonts can be

seen in Fig. 3-5.

Figure 3-5: F-rep (left) and vector (right) depictions of lorem ipsum text

As designs become more complex, the representation should grow at a manageable

rate. Figure 3-7 compares the scaling of f-rep and vector font objects as more lines are

added to the lorem ipsum string. Grown rate is examined through two comparisons.

The first comparison examines the number of vector nodes (shown in Fig. 3-6) and

math-tree clauses; the second compares the length of the math string representation

and the size of the .svg file.
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Figure 3-6: Close-up of vector font, showing nodes
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Figure 3-7: Scaling behavior on lorem ipsum strings
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Fair comparisons of absolute values are not meaningful; the point of interest is

ratios. For both comparisons, the ratio is nearly constant: the number of math clauses

is ≈ 1.4× the number of vector nodes, and the .svg files are ≈ 5.7× the size of the

equivalent math string. In this example, the data indicates that f-reps grow at an

equivalent rate to more traditional representations.

3.10 Bitmap Rendering

In certain workflows, f-rep expressions are rendered directly to bitmap images (rather

than to volumetric representations) for display on the screen and toolpath generation.

This section examines f-rep to height-map performance, rendering models at varying

resolutions and with varying numbers of threads. Multithreading is implemented by

dividing the spatial region and assigning each thread to its own region.

First, we examine the two-dimensional lorem ipsum example discussed throughout

this chapter. A graph showing render time as a function of voxel count appears in Fig.

3-8. Render time appears roughly linear with voxel count. Adding threads decreases

render time at what appears to be a logarithmic rate.
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Figure 3-8: Speed performance of lorem ipsum text
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Next, we consider a three-dimensional mold design, shown in Fig. 3-9. This model

is rendered as a height-map, taking advantage of depth-based culling as well as tree

pruning strategies discussed above.

Figure 3-9: Mold height-map

Rendering time is shown in Fig. 3-10. As with the text, render speed is roughly

linear with voxel count and decreases logarithmically with more threads.
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Chapter 4

Design Tools

4.1 Motivation

The use of f-reps as a geometry backend requires an appropriate user interface, as

users expect a higher level of abstraction than raw math expressions in their design

tools. This chapter presents a pair of design tools that use f-reps as a backend;

this illustrates the argument that a simple, clean geometry engine allows for rapid

prototyping and iteration of design tools themselves.

The first tool, fabserver, is a web-based tool that represents solids as graphs of

information flow; the real-space positions of nodes modify model parameters. The

second, kokopelli, uses Python as a hardware description language, allowing for

metaprogramming and encoded design intent.

4.2 fabserver

fabserver is a design tool written by Neil Gershenfeld as part of the fab modules

[34]. It runs in modern web browsers using JavaScript and SVG for rendering. Com-

putational geometry is offloaded to a separate server. Users design models as a graph

of information flow, where the real-space coordinates of nodes become parameters in

the model.
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4.2.1 Client-server model

fabserver is implemented with a client-server model, illustrated in Figure 4-1.

Client

F-rep string

Region parameters
Server

Images

Figure 4-1: fabserver client-server model

The client passes f-rep strings and descriptions of the render bounds to a server,

which renders the expression and returns bitmap images to the client. The server

can be run locally, but this model also allows for decentralization and “cloud CAD”,

where dedicated servers provide the computing horsepower for model rendering and

the client’s operations are limited to string manipulation and bitmap display.

4.2.2 Design philosophy

Figure 4-2 shows fabserver running in a browser window. Each green node propa-

gates some amount of information to its children; the information may include position

and math expressions among other parameters. In this example, the circle node takes

in the position of the previous node in the graph, calculates a radius, then outputs a

math string representing a circle.

Nodes are fragments of JavaScript code, so the tool is easily extensible. Users

can modify the code in provided nodes to change their behavior, or write their own

custom nodes to add new functionality.

4.3 kokopelli

kokopelli was written as both a platform for experimentation and as a practical

design tool. It uses Python as a hardware description language for solid models,

defining standard libraries of shapes and transform that in turn manipulate f-rep
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Figure 4-2: fabserver window with simple model

strings. Users interact with this higher level of abstraction, rather than directly

manipulating f-rep strings; the full power of Python and its extension libraries can

be used in designing solid models.

4.3.1 Similar work

The notion of an f-rep language dates back to the Hyperfun project [14, 40], which

defines a language for f-rep based models. Other examples of scripting-based CAD

include OpenSCAD [26], DesignScript [3], and ImplicitCAD [38].

The first two design environments use boundary-representations (with the Shape-

Manager and CGAL kernels respectively); the latter uses implicit surfaces but is quite

slow at present. In addition, all but ImplicitCAD use custom languages (without the

widespread usage and extension libraries of Python); ImplicitCAD uses Haskell, which

is less widespread as Python.
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4.3.2 User Interface

The user interface in kokopelli is inspired by Bret Victor’s talk titled “Inventing

on Principle” [48]. It includes two main panels, shown in Fig. 4-3. One panel shows

the object’s source code; the other shows a rendering of the object (either as height-

map or shaded solid). A set of callbacks re-renders the visualization when the code

changes.

Figure 4-3: Gear model in kokopelli

4.3.3 Model refinement

kokopelli includes two rendering modes, each of which supports dynamic re-rendering

based on the region of interest. In the first mode, objects are rendered as height-map

images. When the user zooms and pans around the image, the f-rep design is re-

evaluated based on the window bounds and zoom level so that is always pixel-for-pixel

accurate to the viewport. This render operation takes place in a background thread

and does not disrupt the UI.
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The second rendering mode uses OpenGL to display triangulated meshes. F-

reps are first converted to ASDFs, then triangulated using the strategies discussed in

Section 2.8. In this render mode, re-rendering is more challenging: it is difficult to

tell which parts of a model are closest to the camera.

Model refinement is decided experimentally. Each mesh includes a link back to its

source data (which may be an f-rep expression or an ASDF file). In a hidden rendering

pass, meshes are drawn with unique flat colors. These colors are then counted, pixel

by pixel. If any mesh occupies a large fraction of the viewport, it is subdivided

and refined. If a subdivided region occupies a small fraction of the viewport, it is

collapsed. Figure 4-4 shows a cube being subdivided as we zoom in; each submesh is

drawn with a unique flat color.

Figure 4-4: Subdivision meshes

This implementation of level-of-detail rendering is extremely flexible, as the refine

operation depends on the mesh’s source. For an f-rep, the refine operation renders

subregions at a higher resolution; for a multi-scale ASDF file (as discussed in Section

5.4), it simply loads the next level-of-detail model from a file.
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4.3.4 Extensibility

The use of Python allows designs to be hierarchical, modular, and functional. A

standard library provides a set of basic shapes, but new shapes can be defined as

simple functions that take arbitrary arguments. In the involute gear model from Fig.

4-3, the involute curve was defined as a custom function then used to generate the

array of teeth.

In addition, there is a wealth of third-party libraries that extend Python in various

ways. Figure 4-5 shows a design by Sam Calisch for a multi-point pressure sensor

intended to go into a running shoe [10].

Figure 4-5: Pressure sensor array in kokopelli

This design is notable because it uses NumPy [1] for efficient operations on arrays

of points. The positions of sensor pads are defined as an array of measurements; pads

and links are automatically generated with array operations.
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4.3.5 Sample design

As a non-trivial proof-of-concept, Jonathan Ward’s MTM A-Z PCB mill [49] was

re-implemented as a parametric kokopelli file, shown in Fig. 4-6

Figure 4-6: MTM A-Z PCB mill

The script-based design system allows extensive encoding of design intent. This

model was parameterized by a set of variables, most notably sheet thickness and

milling area. Modifying these variables creates plausible modified designs, as shown

in Fig. 4-7.

Figure 4-7: Modified MTM A-Z, with larger area (left) and thicker stock (right)

This model features thirty-five distinct parts: twenty-six model parts, three motor

placeholders, and six rods. The model is regenerated in 0.55 seconds upon parameter
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modifications; the refinement process described above is critical in keeping initial

render times low.

4.3.6 Design scaling

To examine scaling to many parts, the MTM A-Z model above was arrayed, as illus-

trated in Fig. 4-8. Each MTM machine instance has complexity described in Table

4.1.

Figure 4-8: MTM machine array

Metric Count
Parts 35

Math string length (bytes) 7401
Math tree nodes (deduplicated) 2167

Table 4.1: MTM model complexity metrics

Render time and memory usage are showed in Fig. 4-9. The system did not

take advantage of instancing, so both render time and memory usage are linear with

number of machines. In this demonstration, over one hundred separate parts are

rendered in around two seconds. This is not unreasonably slow, but approaches the
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limits of user-perceived responsiveness. Further work in caching and instancing could

be valuable for designing assemblies with hundreds of distinct parts.
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Figure 4-9: MTM array scaling
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Chapter 5

Volumetric Scanning

5.1 Motivation

When digitizing physical objects, there are two primary strategies. Surface scanning

uses structured light, lasers, etc. to produce a point cloud describing an object’s

surface. These points can then be stitched together into a mesh, often with color

information, to produce a triangulated object model. In contrast, volumetric scanning

(e.g. CT scanning) produces a volumetric data set with millions of object density

samples stored on a three-dimensional lattice.

This chapter describes a strategy for importing volumetric scan data into our

CAD/CAM workflow. The chosen import strategy uses density samples and a user-

defined threshold to produces an “isosurface” ASDF.

This work is inspired by a collaboration with Jeff Koons, whose work often involves

digitizing physical artifacts then recreating them out of unusual materials and at

much larger scales. His team’s existing workflow involves converting CT data into

triangulated meshes, then laboriously post-processing the meshes to ensure that they

are suitable for machining. This process takes hundreds of person-hours to complete

for complex meshes. As such, a workflow that skips the triangulation step entirely is

very appealing.
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5.2 Import strategy

It has been observed that density samples are somewhat smoothed between neigh-

boring voxels in CT scanning [24]. As such, when constructing the isosurface ASDF,

density samples on minimum-sized voxels are interpreted as distance values from the

user-defined threshold density. This allows the system to extract smoothly curving

surfaces, rather than millions of voxel cubes.

The general algorithm to import density samples is shown in Alg. 5.1. It uses

a “bottom-up” strategy where minimum-sized voxels are constructed then merged

using Simplify (Alg. 2.1).

Algorithm 5.1 CT data import algorithm

function ImportRecursive(data, region, threshold)
if all values in region are below threshold then

return an empty ASDF cell
else if all values in region are above threshold then

return a filled ASDF cell
else if region is a single voxel then

Construct a leaf-type ASDF named leaf

Set leaf’s d values to density samples (offset by threshold)
return leaf

else
Divide region into subregions
ImportRecursive(data, subregion, threshold) for each subregion
Construct an ASDF asdf that contains subtrees as branches
Simplify(asdf)
return asdf

end if
end function

5.3 Performance

This form of isosurface construction produces efficient, sparse representations. It was

tested on a piece of lace from a ceramic figurine, shown in Fig. 5-1. The original CT

data is 255× 255× 511 samples, with a voxel side of 0.1 mm.

Table 5.1 compares file sizes across a variety of representations. Compressed file
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Figure 5-1: CT scanned lace (normals, shaded, and height-map)

sizes are also shown (to reduce dependance on the particular structure of each file

format).

Description File type File size (MB) Compressed size (MB)
Raw CT data .vol float array 127 113

Näıve marching cubes Binary .stl 194 25
Smoothed mesh Binary .stl 30 27
ASDF isosurface .asdf file 14 11

Table 5.1: File sizes in CT workflow

From these results, we conclude that that the CT to ASDF workflow is effective

at reducing file size while preserving isosurface detail.

5.4 Large files and multi-resolution importing

Importing a 3.6 GB voxel data set (992x992x992) into an ASDF requires a significant

amount of RAM. It was possible on a high-end workstation, but could be difficult

for commodity hardware. By sampling a subset of density values, we can create a

set of smaller ASDFs that exchange coverage region for sample count to maintain

consistent file sizes.

The large file was converted into a three levels of ASDF files. The top-level file

contained the entire region and used 1/64 of the density samples; files on the middle

level contained 1/8 of the bounding region and used 1/8 of the samples; files on the

lowest level contained 1/64 of the bounding region and used every sample.
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Even though the multi-resolution ASDF includes redundant data between levels,

we find that it reduces the file size by more than an order of magnitude, as shown in

Table 5.2. Meshes are absent from this table, as they were prohibitively large.

Description File type File size (MB) Compressed size (MB)
Raw CT data .vol float array 3724 2688

ASDF isosurface Single .asdf file 212 159
ASDF isosurface Multiple .asdf files 260 203

Table 5.2: File sizes in multi-resolution CT workflow

Figure 5-2 shows a multi-resolution ASDF triangulated at two different detail

levels. The left model is visually low-resolution but suitable for high zoom levels.

The model on the right is higher-resolution and can be dynamically loaded when

appropriate. In practice, multi-resolution ASDFs are build into the system described

in Subsection 4.3.3, so they are dynamically refined in the same manner as f-rep

expressions.

Figure 5-2: Multi-resolution ASDF models
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Chapter 6

Manufacturing

Previous chapters have discussed ways to create solid models; this chapter covers

transforming these models into physical artifacts. We begin by discussing a strategy

for generic CAM workflow construction. Next, we discuss path planning on discrete

lattices, including a brief detour to describe a space-efficient contouring algorithm for

ASDFs. Finally, we show a challenging worked example fabricated on a five-axis mill.

This chapter has its genesis in the fab modules project [34], a set of tools for

CAM on many machines and with a variety of input formats. Major improvements

include better workflow generation, simple extensibility (to add new machines), the

use of ASDFs rather than greyscale images, and clean integration with the CAD user

interface.

6.1 Generic CAM workflow construction

Figure 6-1 shows the set of workflows for a wide variety of inputs and machine out-

puts. Though the graph is complex, end-users are not exposed to the full graph of

possibilities. The system computes the needed intermediate stages based on the input

and output types.

Nodes in the graph are implemented in kokopelli as UI panels with defined

inputs and outputs. The panels for a given workflow are stacked into a complete

CAM UI. Figure 6-2 shows a example workflow from f-rep to five-axis shopbot. Each
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Figure 6-1: CAM workflow graph

of the CAM graph nodes has a UI panel (other than CT data import, which uses a

separate command-line utility).

6.2 ASDFs versus bitmaps

Most numerically controlled machines are fundamentally discrete: somewhere in the

machine, a stepper motor is turning in discrete ticks to move an axis. As such, there is

a robust body of work relating to populating lattice occupancy grids from continuous

surfaces (one overview is [2]). If the lattice voxels are smaller than the machine’s

discrete steps, then the output will be optimally smooth.

Previous work in the fab modules [34] uses greyscale bitmap images as general

purpose height-map lattices. Such a height-map is sufficient for two and three-axis

machining, e.g. laser cutting or milling. However, starting the workflow from an

ASDF offers advantages over simple bitmap images.

Because ASDFs are reconstructed with interpolation, they can be stored at a lower

lattice resolution than a bitmap of equivalent error rate; a higher-resolution lattice
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Figure 6-2: CAM workflow panels
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can then be produced by upsampling the ASDF. A simple example is shown in Fig.

6-3. Both the bitmap and the ASDF were rendered on a 22x22 lattice. However,

when reconstructed at 10x the original resolution, the bitmap is pixelated while the

ASDF remains clean.

Figure 6-3: Upsampled bitmap and ASDF

Figure 6-4 examines this property in more detail. A circle of radius 1 was created

and exported at a variety of lattice resolutions. Ideally, tracing a contour around this

circle should give a set of points at radius 1. The graph shows the mean squared error

of contour points (found using a strategy such as the one described in Section 6.4).

Across the range of resolutions, we find that doubling the upsampling level decreases

the mean squared error by a factor of four.

These results have implications for model file size. For a given error rate, we

expect an ASDF to more efficiently encode a model. Figure 6-5 examines the rela-

tionship between mean squared error and file size, with compression used to account

for discrepancies in file formats. The same circle was used as a test file, and error

rates are based on 8x upsampling on the ASDF. We find that the compressed ASDF

file more efficiently represents the model at all error levels.

6.3 Image offsetting

Subtractive fabrication operations typically use a cutting head – whether an endmill,

waterjet, or laser beam – to remove material from an original piece of stock. Offsetting

is a fundamental operation: toolpaths should be generated such that the edge (rather
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than the center) of the cutting head traces the contour of the desired shape. Much

of the literature focuses on generating Voronoi diagrams from continuous shapes (e.g.

[21, 22]); in our work we use a simple distance transform on a discrete lattice.

A Euclidean distance transform was implemented effectively verbatim from Mei-

jster’s 2000 paper [31]. This transform takes a binary bitmap image and returns a

lattice containing Euclidean distances to the solid. The result of the transform on a

printed circuit board design is shown in Fig. 6-6.

Figure 6-6: Original model and distance transform

The Meijster distance transform is trivial to parallelize, as rows and columns are

evaluated independently. Testing on the circuit board from Fig. 6-6 found a local

optimum at two, with more threads leading to degraded performance. These results

are shown in Fig. 6-7.

6.4 Lattice contouring

The marching squares algorithm transforms a distance field to a set of contours. The

algorithm is an adaptation of marching cubes run in two dimensions rather than three.

For a given pixel, there are sixteen possible corner occupancy states; the look-up table

in Fig. 6-8 defines between zero and two edges for each corner occupancy state. The

distance field is scalar, rather than binary, so interpolation between corner values is

used to improve the quality of the resulting contour.

Contouring is a two-stage process. In the first pass, lattice locations are checked

against the look-up table and edges are constructed. In the second pass, edges are

traced to construct full contours. The second pass takes advantage of edge direction-
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Figure 6-7: Time taken for distance transform

Figure 6-8: Marching squares lookup table
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ality: edges are always placed so that they travel counter-clockwise around the solid,

which makes tracing contours simple.

We expect contouring to run in O(n) time, where n is the number of lattice points

in the distance field. This was tested on a complex model by Sam Calisch, showed in

Fig. 6-9.

Figure 6-9: CNC fabric cutter (credit: Sam Calisch)

Figure 6-10 shows contour time as a function of image resolution (with a 1/16”

offset). As expected, time taken in the contouring pass is roughly linear with pixel

count (equivalently, O(n2) with DPI).
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Figure 6-10: Contour time
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6.5 ASDF offsetting

In the course of this research, we also developed a strategy for direct offsetting of

ASDF structures without the intermediate step of a lattice. This strategy is hierar-

chical in space but not in time; it evaluates the same number of points as a lattice

distance transform but efficiently collects them into an ASDF tree. This strategy is

also applicable for direct offsetting from f-rep expressions.

Our strategy is based on the Meijster distance transform. This distance transform

has two stages. In the first stage, columns are processed one by one to generate the

G lattice (which records minimum vertical distance to the solid). In the second stage,

rows are processed one by one to generate the D lattice (which records minimum

distance to the solid with the chosen metric).

Our modified transform operates in a similar manner, but constructs G and D

ASDFs instead of lattices. This preserves the hierarchical nature of the input data

structure. To generate the G ASDF, we generate g columns as in the Meijster distance

transform, then collect them into ASDF cells. Two g columns are active at a time,

representing data on the left and right edges of ASDF cells. We repeat this process

for all of the columns in the image, simplifying ASDF cells when all of their children

have been populated.

Figure 6-11 shows the first two columns being collected into an ASDF. Green

circles represent cells with all children populated; when a node changes from white

to green, it should be simplified to reduce tree size.

The same process is repeated for the D ASDF: rows are generated as in the

Meijster distance transform, then collected into an ASDF with simplification when

cells finish populating all of their children.

In a slight deviation from the Meijster transform, our implementation calculates

both positive and negative distances. This makes leaf cell combination more likely

by giving cells better distance values as their basis for interpolation.

To reduce the size of the resulting trees, our implementation only generates a

single offset, defined by a distance values v. When generating the G ASDF, values
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Figure 6-11: Two columns of ASDF distance transform

greater than
√

2v are classified as empty and values less than zero are classified as

filled. When generating the D ASDF, an isocontour at distance v is saved in leaf

cells; cells above or below this isocontour are marked as empty or filled. Figure 6-12

shows multiple offsets generated using this strategy.

Figure 6-12: Multiple ASDF offsets

In practice, this algorithm runs slightly slower than a plain lattice distance trans-

form, as extra time is required for tree manipulations. The algorithm is interesting

from a theoretical perspective, but proved not to be of practical use: files that are

too large for the original algorithm for reasons of size are infeasible for the modified

algorithm for reasons of running time.
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6.6 Rough cuts

Rough cuts are intended to efficiently clear material, generating a set of flat contours

that can be further refined. They are calculated on the XY plane at a variety of Z

heights. The input heightmap or ASDF is thresholded at each Z value to produce a

binary image. A distance transform produces a continuous distance field from this

binary image, and a set of contours are extracted.

Generating rough cuts in this manner is relevant to both two-dimensional and

three-dimensional machining. Figure 6-13 shows offset contours for machining of

PCB traces, while Fig. 6-14 shows rough cuts on multiple Z levels.

Figure 6-13: Contour cuts on a PCB bitmap

Figure 6-14: Rough cuts on a solid model
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6.7 Toolpath sorting

Each layer of a rough cut is described by a list of paths (which may be either closed

or open). Before sending them to the machine, it is useful to sort them to minimize

jog distance.

This sorting must obey the rule that if path A is completely enclosed by path B,

then A should be cut before B. If B was cut before A, then the piece containing A

would be free to move as A was being cut out; obviously, this is not desirable.

We check for enclosure by finding the XY bounding box of each path, then declar-

ing that path A is enclosed by path B if the bounding box of A is entirely within the

bounding box of B. This rule will occasionally yield a false positive (i.e. saying that

A is within B when this is not the case), but will never yield a false negative (which

would produce an invalid sorting). Figure 6-15 shows this rule applied in four cases.

Case 1 is a correct positive, cases 2 and 3 are correct negatives, and case 4 is a false

positive.

1 2 3 4
Figure 6-15: Paths A (green) and B (red) with their bounding boxes (dotted)

A greedy algorithm is used for path sorting. At each stage, we choose the path

whose start point is nearest to the previous path’s end point and whose enclosed paths

have all already been selected. This is an O(n2) strategy (where n is the number of

paths to sort), as we generate pairwise distances from path start and endpoints.

Figure 6-16 shows a set of sorted toolpaths. Color shades from blue (first toolpath)

to green (last toolpath), and red lines show traverses.

This strategy is non-optimal. For closed toolpaths, the start and end points could
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Figure 6-16: Sorted toolpaths

be anywhere along the loop, rather than at specific locations. In addition, the greedy

algorithm does not necessarily give optimal orderings. As toolpath sorting is equiva-

lent to the traveling salesman problem (with precedence constraints), developing an

polynomial-time algorithm to find the optimal solution is beyond the scope of this

thesis [11].

6.8 Finish cuts

A finish cut travels along the XZ plane at many Y values or the YZ plane at many X

values, tracing the contours of the shape’s surface. Performing a finish cut following

rough cuts improves the quality of the final model.

On a height-map lattice, finish cuts are implemented using pseudo-convolution.

A finish cut is parameterized by endmill radius and shape (e.g. flat or ball). Given

these parameters, we generate two lattices. The first is a heightmap representing the

endmill (at the same pixel resolution as the original lattice); the second is a binary

mask recording occupancy. Examples of endmill height-maps are shown in Fig. 6-17

We then “convolve” the endmill with the model’s height-map lattice. In normal
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Figure 6-17: Flat and ball endmill heightmaps

convolution, we calculate the sum of many multiplication operations; this pseudo-

convolution replaces multiplication with subtraction and summing with max, while

only checking points where the endmill mask is true. This operation returns a z

height for the endmill such that it barely touches the surface at some point on its

area. Figure 6-18 shows finish cuts on a simple cube with flat and ball endmills. As

expected, the ball endmill traces a curving path around the cube’s edges.

Figure 6-18: Finish cuts with flat and ball endmills

6.9 Multi-plane machining

For complex models, we developed a workflow to perform three-axis rough and/or

finish cuts on multiple distinct cut planes. This workflow was targeted at a Shopbot

5-Axis machine, shown in Fig. 6-19, but the toolpath generation stage is generic and
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applicable to other five-axis machines.

Figure 6-19: Shopbot 5-axis

This workflow takes place in two stages. In the first stage, a target ASDF is ren-

dered to heightmaps with various rotations, then contoured with rough and finish cuts

as described above. The cut positions are transformed from the rotated coordinate

system to the global coordinate system and the endmill direction is recorded as a unit

vector. The result of the first stage is a set of paths, where each path contains some

number of six-element points (representing position on the solid’s surface and endmill

direction vector). These paths are grouped by cut plane. This stage is generalizable

to any five-axis machine.

In the second stage, these planes are combined into a single path file based on

the Shopbot’s mechanics. Because the Shopbot uses a rotating head (rather than a

trunion table), the surface position must be offset by the bit length plus the gauge

length in the direction opposite the endmill pointing vector.

Jogs between cuts on a plane must take place along a safe vector. Our strategy for

these jogs is very conservative. Given a point on a safe plane s, an endmill direction

vector v (with |v| = 1), and a cutting point p, the appropriate safe position is found

at p′ = p−v ((p− s) · v) (shown in Fig. 6-20). All jogs are made along the safe plane.
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Figure 6-20: Safe plane for angled cuts

Using similar math, we check the endmill depth based on the bit length provided by

the user. If the endmill depth exceeds the bit length, it is backed out to an appropriate

distance. This prevents the chuck from colliding with the body of the model. Again,

this is a conservative strategy. Depending on model and chuck geometry, it is often

possible for the chuck to enter the model’s bounding box without collision, but this

is more complex to check.

Finally, special care must be taken when transitioning between cut planes. The

strategy is described in Algorithm 6.1. Following this sequence ensures that the head

will not cut through an existing part of the model, with the limitation that the cutting

planes cannot be overhanging (i.e. the z coordinate of the endmill direction vector

must be ≤ 0).

Algorithm 6.1 Cut plane transfer

Retreat to safe plane
Move up on the z axis to above the top of model
Rotate so that the endmill is pointing down (A = B = 0)
Travel to the xy coordinates of the next plane’s first point
Rotate head based on this plane’s pointing vector
Travel to the z coordinate of the next plane’s first point
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The implemented workflow includes three different plane selection strategies. The

first uses the five visible planes (top, front, back, left, and right). The second allows

a user-defined plane, which can also be taken from the viewport rotation. The third

option generates evenly spaces planes based on user-provided step sizes (this is a

generalization of the first strategy).

Machining separate planes works best when the planes are independent. In prac-

tice, some amount of air cutting occurs when a path attempts to clear material that

was already removed on a previous plane.

6.10 Worked example

As a challenging example, we chose to machine the lace discussed in the previous

chapter. The model was machined on the five-axis ShopBot on all five visible faces,

with rough and finish cuts on each face. The original model represented a 1”×1”×2”

volume; it was scaled up by a factor of four and machined as a 4”× 4”× 8” model.

Figure 6-21 depicts the results. Though the chosen end-mill (1/4” ball) was not

small enough to machine individual holes, the output is a reasonable replication of

the CT scan data.
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Figure 6-21: Machined lace
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Chapter 7

Conclusions

This document has described a range of research into novel CAD/CAM workflows,

from design with functional representations to reproduction with CT scanners to

lattice-based path planning. A complete CAD workflow was implemented by a single

researcher over the course of one year, demonstrating rapid prototyping of design

tools for rapid prototyping. Though this workflow has fewer features than high-end

commercial CAD packages, its quick development time is equally due to its lack of

historical baggage.

This chapter summarizes results, discusses workflow limitations, and synthesizes

recommendations for future work in the area.

7.1 ASDF performance and behavior

We found that using adaptively sample distance fields on an octree is an efficient strat-

egy for representing spatially complex objects. The octree takes advantage of spatial

locality and distance samples allow for accurate surface and normal reconstruction.

A trade-off can be made between model accuracy and cell count by tuning the

minimum interpolation level: experimentally, we found that a 10× increase in allowed

interpolation error results in a 3× decrease in the number of cells needed to represent

a model at peak accuracy.

These models show a degree of non-isotropy. In a simple test, worst-case rotations
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required 5× as many cells as an axially-aligned model. However, both of these cases

require far fewer cells than a full octree, as the ASDF does not always recurse to

minimum voxel size along surfaces.

Render time depends on both ASDF and image resolution. Our fairly näıve imple-

mentation performs poorly when rendering a low-resolution ASDF to a high-resolution

image, but generally renders thousands-of-pixel images in tens of seconds using mul-

tiple threads. Render time appears linear with voxel count. Finally, ASDF triangula-

tion runs in slightly sub-linear time relative to the number of voxels being evaluated.

7.2 Functional representations

Distance metric functional representations proved to be an excellent way to popu-

late ASDFs. Even though the distance field from an f-rep may not be completely

Euclidean, they are often linear enough to allow for ASDF leaf cell combination (es-

pecially if they are locally Lipschitz continuous).

F-rep representations appear to be comparable to vector-based representations for

two-dimensional text; both scale at linear rates with text length. In practice, vector

representations have slightly fewer nodes than f-reps have clauses, but f-rep strings

are smaller than equivalent .svg files.

We showed very significant f-rep tree reduction was often possible: in one exper-

iment, an average of 99.5% of nodes could be ignored when rendering small chunks

of the spatial region. Speed improvements over a näıve, pixel-by-pixel approach were

primarily due to this tree pruning, enabled by spatial subdivision and interval arith-

metic. In general, we found render time was approximately linear with voxel count

and decreased logarithmically with thread count.

7.3 CT data import

Importing CT data into an ASDF (rather than a mesh) appears to offer major ad-

vantages. This representation drastically reduces file size while preserving intricate
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details. In practice, ASDF “isosurfaces” were between two and three times smaller

than meshes generated from the same model; in addition, the ASDF preserves surface

curvature more accurately than flat triangles.

Though ASDFs have small file sizes, they are often large when loaded into RAM;

as such, commodity laptops may not be able to load an entire CT scan into a single

ASDF tree. Instead, the scan can be downsampled and used to create a series of

ASDFs at various resolutions. In this test, the full set of “multi-resolution ASDFs”

was 15× smaller than the raw scan data.

7.4 Toolpath generation

We found that ASDFs can represent shapes more efficiently than plain lattices, thanks

to both hierarchy and interpolation. Upsampling an ASDF (that is, rendering it above

its native lattice resolution) produces smooth images and decreases contouring error.

The Meijster distance transform was used on greyscale lattices and modified for

use directly on ASDFs. The modified transform was not practical for large images, as

it had a similar running time; the efficiency improvement was only in required storage

space. Generating offset contours was found to be linear with image pixel count, as

expected.

7.5 Workflow limitations

Size remains a major workflow limitation. The Shopbot has a bed size of 2.4 × 1.2

meters at about 10 pixels per mm, equivalent to a 24K by 12K pixel image. This

lattice size (equivalent to a 1.2 GB image at 4 bytes per pixel) is too large to process

on commodity hardware.

Our design tools can create ASDFs at that size without trouble, assuming the

model is not uniformly high-resolution and intricate. However, the workflow for path

planning does not scale well. If using greyscale lattices, the required RAM becomes

excessive: the lattice described above requires 3 GB for storage of intermediary and
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final distance values. If using our ASDF offsetting algorithm, storage sizes remain

reasonable but running time is too long: a simple model on a ShopBot-sized lattice

took six minutes to generate a single offset.

A second workflow limitation is aspect ratio. Parts that are exceedingly thin

require high ASDF cell counts to avoid being overlooked by aliasing. Designs that

use sheet-metal or fabric are not suitable for our CAD system.

7.6 Future work

Extending our workflow to include physical modeling and simulation will enable

closed-loop design, in which parameters extracted from simulation can feed back into

the design description. Future work will likely involve a multiphysics modeling work-

flow that operates on ASDFs, extracting physical, mechanical, and electro-magnetic

properties from ASDF models.

Declarative design is a catch-all phrase for design tools that translate very high-

level descriptions (often specified in terms of constraint satisfaction and maximiza-

tion) into design files. Such design is tightly integrated with techniques from the

optimization research community. Combining our design tools with physical model-

ing will create a strong platform for future declarative design research.

Feature extraction (either algebraically from an f-rep or numerically from an

ASDF) will enable more advanced CAD operations. Though feature-based CAD

introduces topological dependancies not present in f-reps, it allows for operations

like fillets (which are defined on a specific edge or face). A combination of f-rep

and feature-based operations could enable CAD tools competitive with commercial

offerings at a fraction of their complexity.

More generally, it would be valuable to develop editing tools that modify ASDFs

directly (rather than treating them as read-only after their initial creation). ASDFs

have already been used at the basis for a sculpting-style design tool [43]; fusing this

style of interactive creation with the rest of our powerful workflow would open up

interesting possibilities for more creative design.
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There are also a set of interesting questions relating to efficient CAM operations

on these distance fields. Our lattice-based strategy is effective, but discards all of

the hierarchy in the structure and scales poorly to very high-resolution models. A

fully hierarchical CAM workflow would solve the size limitations discussed above and

enable very high-resolution design and fabrication. Finally, extending the workflow

to full five-axis machining leads to another set of research challenges.

91



92



Appendix A

Math String Syntax

The f-rep solver includes a parser for math strings. This parser accepts strings written

in a sparse prefix-notation syntax, with functions listed in Tables A.1 and A.2. Note

that all trigonometric functions operate on radians.

Function Code
Sine s

Cosine c

Tangent t

Arcsine S

Arccosine C

Arctangent T

Absolute value b

Square q

Square root r

Negation n

Table A.1: Unary F-rep functions

Function Code
Addition +

Subtraction -

Multiplication *

Division /

Minimum i

Maximum a

Power p

Table A.2: Binary F-rep functions
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The f-rep syntax accepts four distinct types of atoms. X, Y, and Z are replaced

by position in the world’s coordinate system at any given evaluation point. Floating-

point constants are preceded by f, followed by the value (e.g. f3.14159 or f6.023e23).

For example, a circle (x2 + y2 − 1) is written as -+qXqYf1.

Finally, the map operation allows for coordinate transforms to be represented in a

space-efficient manner. The map operator is written as m followed by four arguments.

The first three arguments represent transformed expressions x′, y′ and z′ respectively

(in terms of x, y, and z); if a coordinate is not modified then a space appears instead.

The last argument is the expression to evaluate with the transformed coordinates.

The example m+XYX X applies the coordinate transform X’=X+Y, Y’=X, Z’=Z to the

expression X, producing X+Y (note that the z coordinate is not modified, because the

third argument following m is a space).
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Appendix B

Sample Machine Description

Machine descriptions are kept in the folder koko/cam/machines/. Each machine is

defined by a single Python file ending in .py. This module must define the following

global (module-level) variables:

Name Type Description
NAME String Machine name
INPUT FabPanel Preceeding panel
PANEL OutputPanel Machine panel

DEFAULTS List of tuples Set of defaults

This appendix contains a heavily annotated machine description, intended for use

as a template for new machines. Note that new machines also need to be added to

the MACHINES global variable in koko/cam/machines/ init .py. This will cause

them to appear in the drop-down menu.

## koko/cam/machines/epilog.py

## NAME is the machine 's name. It will appear in the drop -down menu

## of machines in the CAM panel.

NAME = 'Epilog '

import tempfile
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import koko

from koko.cam.panel import OutputPanel

## This section defines a UI panel for this machine.

## It's a subclass of OutputPanel , which is defined in

## koko/cam/panels.py

class EpilogOutput(OutputPanel):

## Every machine needs to define an extension for saved files

extension = '.epi'

## Every machine has to have a constructor

def __init__(self , parent):

OutputPanel.__init__(self , parent)

## The construct function takes in a panel name and

## a list of tuples. Each tuple contains

## Parameter label

## Parameter name

## Parameter type

## Checking function (optional)

self.construct('Epilog laser cutter ', [

('2D power (%)', 'power ', int , lambda f: 0 <= f <= 100),

('Speed (%)', 'speed ', int , lambda f: 0 <= f <= 100),

('Rate','rate', int , lambda f: f > 0),

('xmin (mm)', 'xmin', float , lambda f: f >= 0),

('ymin (mm)', 'ymin', float , lambda f: f >= 0),

('autofocus ', 'autofocus ', bool)

])

## A machine needs a run function. The argument to this

## function is whatever is returned from the machine 's
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## INPUT panel (in this case , it's a ContourPanel ,

## which returns one variable named 'paths '). The run

## function should convert the paths to a machine -specific

## file.

def run(self , paths):

## self.get_values returns a dictionary mapping parameter

## names (as defined above in self.construct) to values ,

## or False if any of the parameters is invalid

values = self.get_values ()

if not values: return False

## It's often helpful to change the status bar to

## give the user feedback on what's going on.

koko.FRAME.status = 'Converting to .epi file'

## A machine needs to define self.file as a

## NamedTemporaryFile. This file should contain the

## actual machine output instructions

self.file = tempfile.NamedTemporaryFile(suffix=self.

extension)

## Lines below here describe how to generate the laser

## output file. This will vary from machine to machine.

job_name = koko.APP.filename if koko.APP.filename else '

untitled '

self.file.write("%% -12345 X@PJL JOB NAME=%s\r\n E@PJL ENTER

LANGUAGE=PCL\r\n &y%iA &l0U &l0Z &u600D *p0X *p0Y *t600R

*r0F &y50P &z50S *r6600T *r5100S *r1A *rC %%1BIN;XR%d;YP%

d;ZS%d;\n" %

(job_name , 1 if values['autofocus '] else 0,

values['rate'], values['power '], values['speed ']))

scale = 600/25.4 # The laser 's tick is 600 DPI

xoffset = values['xmin']* scale
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yoffset = values['ymin']* scale

xy = lambda x,y: (xoffset + scale*x, yoffset + scale*y)

for path in paths:

self.file.write("PU%d,%d;" % xy(*path.points [0][0:2]))

for pt in path.points [1:]:

self.file.write("PD%d,%d;" % xy(*pt [0:2]))

self.file.write("\n")

self.file.write(" %%0B %%1 BPUtE %% -12345 X@PJL EOJ \r\n")

## It's important to flush the file when you're done

## writing to it , since it may be used after this point

self.file.flush()

koko.FRAME.status = ''

return True

########################################

## INPUT is whatever panel should preceed this machine in a

## CAM workflow. Typically , it will be some form of path panel.

from koko.cam.path_panels import ContourPanel

INPUT = ContourPanel

## PANEL is the name of this machine 's output panel (in

## this case , it's the EpilogOutput defined above)

PANEL = EpilogOutput

########################################

from koko.cam.inputs.cad import CadImgPanel

## Defaults is a list of tuples.
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## Each tuple contains a default name and dictionary.

## The dictionary maps FabPanel names to tuples of parameter names

## and desired values.

## For example ,

## ('CardBoard ', <=== Default name

## {CadImgPanel: <=== FabPanel to which the

## following settings apply:

## [('res ', <=== Parameter name

## 5 <=== Parameter value

## )]})

## When a set of defaults is applied to a workflow , each panel

## is looked up in the defaults dictionary. If found , each

## parameter in the list of tuples is set to the desired value.

DEFAULTS = [

('<None >', {}),

('Cardboard ',

{CadImgPanel: [('res' ,5)],

ContourPanel: [('diameter ', 0.25)],

EpilogOutput: [('power ', 25), ('speed ', 75),

('rate', 500), ('xmin', 0), ('ymin', 0)]

}

)

]
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Appendix C

Core classes

This appendix describes the core classes used in this CAD/CAM workflow. These

classes are used in kokopelli, but they are not tightly coupled to the rest of the

system; they could be used in other workflows. Note that this documentation only

includes a select subset of methods and parameters. The source is heavily annotated

with Doxygen docstrings, which can be processed into a complete manual.

C.1 koko.fab.asdf.ASDF

The ASDF class wraps a pointer to a C data structure storing the actual ASDF. The

pointer is stored in the ptr data attribute. When the Python destructor is called,

this structure is freed if the pointer is to the top of an ASDF tree. This is determined

by the free data attribute.

C.1.1 Instance methods

contour(self, interrupt=None)

interrupt A threading.Event object used to halt run

Finds an isocontour from the ASDF, returning a list of Paths. render(self, region=None,

threads=8, alpha=0, beta=0, resolution=10)
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region Render region (if None, bounding box is used)

threads Threads to use in rendering

alpha Rotation about Z axis

beta Rotation about X axis

resolution Resolution in voxels/mm

Renders the ASDF as a height-map, returning an Image.

rescale(self, mult)

mult Scale factor

Rescales the ASDF in-place by the given scale factor.

save(self, filename)

filename Target filename

Saves the ASDF to a file.

slice(self, z)

z Slice height

Slices the ASDF at the given Z value, returning a 2D ASDF.

triangulate(self, threads, interrupt)

threads Boolean; if True, multiple threads are used

interrupt A threading.Event object used to interrupt render

Triangulates the ASDF, returning a Mesh.
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C.1.2 Class methods

from vol(cls, ni, nj, nk, offset, mm per voxel, merge leafs=True)

ni X sample count

nj Y sample count

nk Z sample count

offset Isosurface density

mm per voxel Scaling factor (mm/voxel)

merge leafs Boolean determining whether leaf cells are merged

Loads an ASDF from a .vol file, returning it.

load(cls, filename)

filename ASDF filename

Loads an ASDF from an .asdf file, returning it.

C.2 koko.fab.image.Image

The Image class wraps a NumPy array, using it as an array of pixels. Each instance

has depth and channels data attributes that keep track of image parameters. Valid

depth values are 8, 16, 32, or ’f’ (representing integers of various sizes or floating-point

values). Valid channel counts are 1 or 3 (representing greyscale or RGB images).

C.2.1 Instance methods

contour(self, bit diameter, count=1, overlap=0.5)

bit diameter Endmill (or beam) diameter (in mm)

count Number of offsets

overlap Overlap between offsets (0-1)

Finds a set of contours on a one-channel distance field image (with a depth of ’f’).

Returns a list of Path objects.

copy(self, channels=None, depth=None)
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channels New channel count

depth New image depth

Duplicates the image, optionally modifying depth and channel count.

distance(self, threads=2)

threads Number of threads to use

Applies the Meijster distance transform, returning a one-channel floating-point image.

save(self, filename)

filename Image filename (must end in .png)

Saves the image as a bitmap. Three-channel images are saved without metadata; one-

channel images are saved with bounds metadata. X and Y dimensions are encoded in

the image’s scale; Z bounds are specified in tEXt chunks with labels zmin and zmax

(in mm).

threshold(self, z)

z Threshold height (in mm)

Returns a thresholded copy of the original image.

C.2.2 Class methods

load(cls, filename)

filename Name of .png file to load

Loads and returns a single .png file. The file is converted into a 1-channel 16-bit

heightmap.

merge(cls, images)

images List of Image objects to merge

Merges a set of images into a single 3-channel 8-bit image, which is returned. Input

images must have same z bounds and scale. The color data attribute is used to

colorize images as they are merged.
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C.3 koko.fab.path.Path

A Path contains a set of points for a toolpath or vector contour. Each instance

constains a data attribute named points, which stores toolpath points in the rows

of a NumPy array. The data attribute closed defines whether the path is a loop.

C.3.1 Static methods

sort(paths)

paths List of Path objects to sort

Sorts the paths as described in Section 6.7, returning a sorted list of paths.

C.4 koko.fab.tree.MathTree

The MathTree class stores a distance metric expression. This expression is stored in

the math data attribute as a string in the sparse prefix notation described in Appendix

A. When necessary, this expression is parsed into a C data structure. A pointer to

this structure is stored in the ptr data attribute (which is None if the string has not

yet been parsed).

C.4.1 Instance methods

All common arithmetic and logic operators are overloaded (+,×, /,−,&, |). The

shape data attribute modifies their behavior: if true, then addition and subtraction

are interpreted as logical operators rather than arithmetic operators.

asdf(self, region=None, resolution=None,

mm per unit=None, merge leafs=True, interrupt=None)
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region Evaluation region (if None, taken from expression bounds)

resolution Render resolution in voxels/unit

mm per unit Real-world scale

merge leafs Boolean determining if ASDF leafs are merge

interrupt threading.Event to halt rendering

Renders and returns an ASDF.

clone(self)

Returns a clone of the target MathTree.

map(self, X=None, Y=None, Z=None)

X New X expression or None

Y New Y expression or None

Z New Z expression or None

Applies a coordinate transform, returning a new MathTree.

render(self, region=None, resolution=None,

mm per unit=None, threads=8, interrupt=None)

region Evaluation region (if None, taken from expression bounds)

resolution Render resolution in voxels/unit

mm per unit Real-world scale

threads Number of threads to use

interrupt threading.Event to halt rendering

Renders and returns an Image.

save dot(self, filename, arrays=False)

filename Target filename

arrays Boolean determining whether nodes are packed in dot graph

Converts the math expression into a .dot graph description.

106



C.4.2 Static methods

wrap(self, value)

value Target to convert to MathTree

Converts a value into a MathTree. Strings are assumed to be valid sparse prefix

expressions; numbers (floats or ints) are converted; other input types raise an error.
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Appendix D

Notes on tools

This thesis describes a complete workflow, but the design tools emerged in iterative

stages. This appendix includes notes on this evolution, emphasizing tools that were

found to be useful.

Early development used C++ as the implementation language for the solver. In

this implementation, Boost.Thread is used to implement multithreading; the STL is

also used for miscellaneous data structures. This implementation resulted in a mod-

ular design, with small programs that do one operation (e.g. math png, math stl).

The newer implementation presented in this document uses C for core algorithms

and the Python ctypes library to wrap these algorithms. This proved to be a sig-

nificant improvement. The Boost dependancy is eliminated, as threading is handled

by Python’s threading module. Python threading is often criticized, as only one

thread can execute Python code at a time (due to the global interpreter lock or GIL).

However, the GIL is released when C code is called, eliminating this concern.

The Python/ctypes implementation made rapid iteration much simpler. Instead

of implementing simple routines in C/C++, they could be written in Python, which

led to faster development. C was only used for speed-critical sections of the code. By

saving pointers to C data structures in Python objects and defining the del oper-

ator (called by the Python garbage collector), we re-used Python’s garbage collector

to deallocate C data structures.

NumPy, a Python library for efficient array operations, was also instrumental in
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developing these tools. Pointers to rows of NumPy arrays can be passed directly

into C code, allowing render functions to populate images while keeping memory

allocation and managment in the hands of Python.

The kokopelli UI is written in wxPython. This UI toolkit includes a text edi-

tor (in wx.py.editwindow.EditWindow) which was adapted into the editor seen in

kokopelli. The OpenGL canvas is created using the wx.glcanvas.GLCanvas ob-

ject, which is very poorly documented. PyOpenGL is also used for various OpenGL

operations. OpenGL 2.1 and GLSL 1.20 were targeted, using a fairly minimal set

of features. This OpenGL version was released in 2006, so we expect it to be sup-

ported on most modern hardware. Finally, Doxygen is used to automatically generate

well-formatted documentation for the project.

This thesis was written in LATEX, and graphs were generated using matplotlib.
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